Upload folder using huggingface_hub
Browse files
    	
        README.md
    ADDED
    
    | @@ -0,0 +1,282 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            ---
         | 
| 2 | 
            +
            tags:
         | 
| 3 | 
            +
            - unsloth
         | 
| 4 | 
            +
            license: llama3.1
         | 
| 5 | 
            +
            library_name: transformers
         | 
| 6 | 
            +
            base_model:
         | 
| 7 | 
            +
            - deepcogito/cogito-v2-preview-llama-70B
         | 
| 8 | 
            +
            pipeline_tag: text-generation
         | 
| 9 | 
            +
            ---
         | 
| 10 | 
            +
            > [!NOTE]
         | 
| 11 | 
            +
            >  Includes Unsloth **chat template fixes**! <br> For `llama.cpp`, use `--jinja`
         | 
| 12 | 
            +
            >
         | 
| 13 | 
            +
             | 
| 14 | 
            +
            <div>
         | 
| 15 | 
            +
            <p style="margin-top: 0;margin-bottom: 0;">
         | 
| 16 | 
            +
                <em><a href="https://docs.unsloth.ai/basics/unsloth-dynamic-v2.0-gguf">Unsloth Dynamic 2.0</a> achieves superior accuracy & outperforms other leading quants.</em>
         | 
| 17 | 
            +
              </p>
         | 
| 18 | 
            +
              <div style="display: flex; gap: 5px; align-items: center; ">
         | 
| 19 | 
            +
                <a href="https://github.com/unslothai/unsloth/">
         | 
| 20 | 
            +
                  <img src="https://github.com/unslothai/unsloth/raw/main/images/unsloth%20new%20logo.png" width="133">
         | 
| 21 | 
            +
                </a>
         | 
| 22 | 
            +
                <a href="https://discord.gg/unsloth">
         | 
| 23 | 
            +
                  <img src="https://github.com/unslothai/unsloth/raw/main/images/Discord%20button.png" width="173">
         | 
| 24 | 
            +
                </a>
         | 
| 25 | 
            +
                <a href="https://docs.unsloth.ai/">
         | 
| 26 | 
            +
                  <img src="https://raw.githubusercontent.com/unslothai/unsloth/refs/heads/main/images/documentation%20green%20button.png" width="143">
         | 
| 27 | 
            +
                </a>
         | 
| 28 | 
            +
              </div>
         | 
| 29 | 
            +
            </div>
         | 
| 30 | 
            +
             | 
| 31 | 
            +
             | 
| 32 | 
            +
            <p align="center">
         | 
| 33 | 
            +
              <img src="images/deep-cogito-logo.png" alt="Logo" width="40%">
         | 
| 34 | 
            +
            </p>
         | 
| 35 | 
            +
             | 
| 36 | 
            +
             | 
| 37 | 
            +
            # Cogito v2 preview - 70B
         | 
| 38 | 
            +
             | 
| 39 | 
            +
            [Blog Post](https://www.deepcogito.com/research/cogito-v2-preview)
         | 
| 40 | 
            +
             | 
| 41 | 
            +
            The Cogito v2 LLMs are instruction tuned generative models. All models are released under an open license for commercial use.
         | 
| 42 | 
            +
             | 
| 43 | 
            +
            - Cogito v2 models are hybrid reasoning models. Each model can answer directly (standard LLM), or self-reflect before answering (like reasoning models).
         | 
| 44 | 
            +
            - The LLMs are trained using **Iterated Distillation and Amplification (IDA)** - an scalable and efficient alignment strategy for superintelligence using iterative self-improvement.
         | 
| 45 | 
            +
            - The models have been optimized for coding, STEM, instruction following and general helpfulness, and have significantly higher multilingual, coding and tool calling capabilities than size equivalent counterparts.
         | 
| 46 | 
            +
              - In both standard and reasoning modes, Cogito v2-preview models outperform their size equivalent counterparts on common industry benchmarks. 
         | 
| 47 | 
            +
            - This model is trained in over 30 languages and supports a context length of 128k.
         | 
| 48 | 
            +
             | 
| 49 | 
            +
            # Evaluations
         | 
| 50 | 
            +
            Here is the model performance on some standard industry benchmarks:
         | 
| 51 | 
            +
             | 
| 52 | 
            +
            <p align="left">
         | 
| 53 | 
            +
              <img src="images/cogito-v2-70b-benchmarks.png" alt="Logo" width="90%">
         | 
| 54 | 
            +
            </p>
         | 
| 55 | 
            +
             | 
| 56 | 
            +
            For detailed evaluations, please refer to the [Blog Post](https://www.deepcogito.com/research/cogito-v2-preview). 
         | 
| 57 | 
            +
             | 
| 58 | 
            +
            # Usage
         | 
| 59 | 
            +
            Here is a snippet below for usage with Transformers:
         | 
| 60 | 
            +
             | 
| 61 | 
            +
            ```python
         | 
| 62 | 
            +
            import transformers
         | 
| 63 | 
            +
            import torch
         | 
| 64 | 
            +
             | 
| 65 | 
            +
            model_id = "deepcogito/cogito-v2-preview-llama-70B"
         | 
| 66 | 
            +
             | 
| 67 | 
            +
            pipeline = transformers.pipeline(
         | 
| 68 | 
            +
                "text-generation",
         | 
| 69 | 
            +
                model=model_id,
         | 
| 70 | 
            +
                model_kwargs={"torch_dtype": torch.bfloat16},
         | 
| 71 | 
            +
                device_map="auto",
         | 
| 72 | 
            +
            )
         | 
| 73 | 
            +
             | 
| 74 | 
            +
            messages = [
         | 
| 75 | 
            +
                {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
         | 
| 76 | 
            +
                {"role": "user", "content": "Give me a short introduction to LLMs."},
         | 
| 77 | 
            +
            ]
         | 
| 78 | 
            +
             | 
| 79 | 
            +
            outputs = pipeline(
         | 
| 80 | 
            +
                messages,
         | 
| 81 | 
            +
                max_new_tokens=512,
         | 
| 82 | 
            +
            )
         | 
| 83 | 
            +
             | 
| 84 | 
            +
            print(outputs[0]["generated_text"][-1])
         | 
| 85 | 
            +
            ```
         | 
| 86 | 
            +
             | 
| 87 | 
            +
             | 
| 88 | 
            +
             | 
| 89 | 
            +
            ## Implementing extended thinking
         | 
| 90 | 
            +
            - By default, the model will answer in the standard mode. 
         | 
| 91 | 
            +
            - To enable thinking, you can do any one of the two methods:
         | 
| 92 | 
            +
              - Set `enable_thinking=True` while applying the chat template.
         | 
| 93 | 
            +
              - Add a specific system prompt, along with prefilling the response with "\<think\>\n". 
         | 
| 94 | 
            +
             | 
| 95 | 
            +
            **NOTE: Unlike Cogito v1 models, we initiate the response with "\<think\>\n" at the beginning of every output when reasoning is enabled. This is because hybrid models can be brittle at times (<0.1% of the cases), and adding a "\<think\>\n" ensures that the model does indeed respect thinking.**
         | 
| 96 | 
            +
             | 
| 97 | 
            +
            ### Method 1 - Set enable_thinking=True in the tokenizer
         | 
| 98 | 
            +
            If you are using Huggingface tokenizers, then you can simply use add the argument `enable_thinking=True` to the tokenization (this option is added to the chat template).
         | 
| 99 | 
            +
             | 
| 100 | 
            +
            Here is an example - 
         | 
| 101 | 
            +
            ```python
         | 
| 102 | 
            +
            from transformers import AutoModelForCausalLM, AutoTokenizer
         | 
| 103 | 
            +
             | 
| 104 | 
            +
            model_name = "deepcogito/cogito-v2-preview-llama-70B"
         | 
| 105 | 
            +
             | 
| 106 | 
            +
            model = AutoModelForCausalLM.from_pretrained(
         | 
| 107 | 
            +
                model_name,
         | 
| 108 | 
            +
                torch_dtype="auto",
         | 
| 109 | 
            +
                device_map="auto"
         | 
| 110 | 
            +
            )
         | 
| 111 | 
            +
            tokenizer = AutoTokenizer.from_pretrained(model_name)
         | 
| 112 | 
            +
             | 
| 113 | 
            +
            prompt = "Give me a short introduction to LLMs."
         | 
| 114 | 
            +
            messages = [
         | 
| 115 | 
            +
                {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
         | 
| 116 | 
            +
                {"role": "user", "content": prompt}
         | 
| 117 | 
            +
            ]
         | 
| 118 | 
            +
             | 
| 119 | 
            +
            text = tokenizer.apply_chat_template(
         | 
| 120 | 
            +
                messages,
         | 
| 121 | 
            +
                tokenize=False,
         | 
| 122 | 
            +
                add_generation_prompt=True,
         | 
| 123 | 
            +
                enable_thinking=True
         | 
| 124 | 
            +
            )
         | 
| 125 | 
            +
            model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
         | 
| 126 | 
            +
             | 
| 127 | 
            +
            generated_ids = model.generate(
         | 
| 128 | 
            +
                **model_inputs,
         | 
| 129 | 
            +
                max_new_tokens=512
         | 
| 130 | 
            +
            )
         | 
| 131 | 
            +
            generated_ids = [
         | 
| 132 | 
            +
                output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
         | 
| 133 | 
            +
            ]
         | 
| 134 | 
            +
             | 
| 135 | 
            +
            response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
         | 
| 136 | 
            +
            print(response)
         | 
| 137 | 
            +
            ```
         | 
| 138 | 
            +
             | 
| 139 | 
            +
            ### Method 2 - Add a specific system prompt, along with prefilling the response with "\<think\>\n". 
         | 
| 140 | 
            +
            To enable thinking using this method, you need to do two parts - 
         | 
| 141 | 
            +
             | 
| 142 | 
            +
             | 
| 143 | 
            +
            Step 1 - Simply use this in the system prompt `system_instruction = 'Enable deep thinking subroutine.'`
         | 
| 144 | 
            +
             | 
| 145 | 
            +
            If you already have a system_instruction, then use `system_instruction = 'Enable deep thinking subroutine.' + '\n\n' + system_instruction`.
         | 
| 146 | 
            +
             | 
| 147 | 
            +
            Step 2 - Prefil the response with the tokens `"<think>\n"`.
         | 
| 148 | 
            +
             | 
| 149 | 
            +
            Here is an example - 
         | 
| 150 | 
            +
             | 
| 151 | 
            +
            ```python
         | 
| 152 | 
            +
            import transformers
         | 
| 153 | 
            +
            import torch
         | 
| 154 | 
            +
             | 
| 155 | 
            +
            model_name = "deepcogito/cogito-v2-preview-llama-70B"
         | 
| 156 | 
            +
             | 
| 157 | 
            +
            model = AutoModelForCausalLM.from_pretrained(
         | 
| 158 | 
            +
                model_name,
         | 
| 159 | 
            +
                torch_dtype="auto",
         | 
| 160 | 
            +
                device_map="auto"
         | 
| 161 | 
            +
            )
         | 
| 162 | 
            +
            tokenizer = AutoTokenizer.from_pretrained(model_name)
         | 
| 163 | 
            +
             | 
| 164 | 
            +
            # Step 1 - Add deep thinking instruction.
         | 
| 165 | 
            +
            DEEP_THINKING_INSTRUCTION = "Enable deep thinking subroutine."
         | 
| 166 | 
            +
             | 
| 167 | 
            +
            messages = [
         | 
| 168 | 
            +
                {"role": "system", "content": DEEP_THINKING_INSTRUCTION},
         | 
| 169 | 
            +
                {"role": "user", "content": "Write a bash script that takes a matrix represented as a string with format '[1,2],[3,4],[5,6]' and prints the transpose in the same format."},
         | 
| 170 | 
            +
            ]
         | 
| 171 | 
            +
             | 
| 172 | 
            +
            text = tokenizer.apply_chat_template(
         | 
| 173 | 
            +
                messages,
         | 
| 174 | 
            +
                tokenize=False,
         | 
| 175 | 
            +
                add_generation_prompt=True
         | 
| 176 | 
            +
            )
         | 
| 177 | 
            +
             | 
| 178 | 
            +
            # Step 2 - Prefill response with "<think>\n".
         | 
| 179 | 
            +
            text += "<think>\n"
         | 
| 180 | 
            +
             | 
| 181 | 
            +
            # Now, continue as usual.
         | 
| 182 | 
            +
            model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
         | 
| 183 | 
            +
             | 
| 184 | 
            +
            generated_ids = model.generate(
         | 
| 185 | 
            +
                **model_inputs,
         | 
| 186 | 
            +
                max_new_tokens=512
         | 
| 187 | 
            +
            )
         | 
| 188 | 
            +
            generated_ids = [
         | 
| 189 | 
            +
                output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
         | 
| 190 | 
            +
            ]
         | 
| 191 | 
            +
             | 
| 192 | 
            +
            response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
         | 
| 193 | 
            +
            print(response)
         | 
| 194 | 
            +
            ```
         | 
| 195 | 
            +
             | 
| 196 | 
            +
             | 
| 197 | 
            +
            Similarly, if you have a system prompt, you can append the `DEEP_THINKING_INSTRUCTION` to the beginning in this way - 
         | 
| 198 | 
            +
             | 
| 199 | 
            +
            ```python
         | 
| 200 | 
            +
            DEEP_THINKING_INSTRUCTION = "Enable deep thinking subroutine."
         | 
| 201 | 
            +
             | 
| 202 | 
            +
            system_prompt = "Reply to each prompt with only the actual code - no explanations."
         | 
| 203 | 
            +
            prompt = "Write a bash script that takes a matrix represented as a string with format '[1,2],[3,4],[5,6]' and prints the transpose in the same format."
         | 
| 204 | 
            +
             | 
| 205 | 
            +
            messages = [
         | 
| 206 | 
            +
                {"role": "system", "content": DEEP_THINKING_INSTRUCTION + '\n\n' + system_prompt},
         | 
| 207 | 
            +
                {"role": "user", "content": prompt}
         | 
| 208 | 
            +
            ]
         | 
| 209 | 
            +
            ```
         | 
| 210 | 
            +
             | 
| 211 | 
            +
             | 
| 212 | 
            +
            # Tool Calling
         | 
| 213 | 
            +
            Cogito models support tool calling (single, parallel, multiple and parallel_multiple) both in standard and extended thinking mode.
         | 
| 214 | 
            +
             | 
| 215 | 
            +
            Here is a snippet -
         | 
| 216 | 
            +
             | 
| 217 | 
            +
            ```python
         | 
| 218 | 
            +
            # First, define a tool
         | 
| 219 | 
            +
            def get_current_temperature(location: str) -> float:
         | 
| 220 | 
            +
                """
         | 
| 221 | 
            +
                Get the current temperature at a location.
         | 
| 222 | 
            +
                
         | 
| 223 | 
            +
                Args:
         | 
| 224 | 
            +
                    location: The location to get the temperature for, in the format "City, Country"
         | 
| 225 | 
            +
                Returns:
         | 
| 226 | 
            +
                    The current temperature at the specified location in the specified units, as a float.
         | 
| 227 | 
            +
                """
         | 
| 228 | 
            +
                return 22.  # A real function should probably actually get the temperature!
         | 
| 229 | 
            +
             | 
| 230 | 
            +
            # Next, create a chat and apply the chat template
         | 
| 231 | 
            +
            messages = [
         | 
| 232 | 
            +
              {"role": "user", "content": "Hey, what's the temperature in Paris right now?"}
         | 
| 233 | 
            +
            ]
         | 
| 234 | 
            +
             | 
| 235 | 
            +
            model_inputs = tokenizer.apply_chat_template(messages, tools=[get_current_temperature], add_generation_prompt=True)
         | 
| 236 | 
            +
             | 
| 237 | 
            +
            text = tokenizer.apply_chat_template(messages, tools=[get_current_temperature], add_generation_prompt=True, tokenize=False)
         | 
| 238 | 
            +
            inputs = tokenizer(text, return_tensors="pt", add_special_tokens=False).to(model.device)
         | 
| 239 | 
            +
            outputs = model.generate(**inputs, max_new_tokens=512)
         | 
| 240 | 
            +
            output_text = tokenizer.batch_decode(outputs)[0][len(text):]
         | 
| 241 | 
            +
            print(output_text)
         | 
| 242 | 
            +
            ```
         | 
| 243 | 
            +
             | 
| 244 | 
            +
            This will result in the output - 
         | 
| 245 | 
            +
            ```
         | 
| 246 | 
            +
            <tool_call>
         | 
| 247 | 
            +
            {"name": "get_current_temperature", "arguments": {"location": "Paris, France"}}
         | 
| 248 | 
            +
            </tool_call><|eot_id|>
         | 
| 249 | 
            +
            ```
         | 
| 250 | 
            +
             | 
| 251 | 
            +
            You can then generate text from this input as normal. If the model generates a tool call, you should add it to the chat like so:
         | 
| 252 | 
            +
             | 
| 253 | 
            +
            ```python
         | 
| 254 | 
            +
            tool_call = {"name": "get_current_temperature", "arguments": {"location": "Paris, France"}}
         | 
| 255 | 
            +
            messages.append({"role": "assistant", "tool_calls": [{"type": "function", "function": tool_call}]})
         | 
| 256 | 
            +
            ```
         | 
| 257 | 
            +
             | 
| 258 | 
            +
            and then call the tool and append the result, with the `tool` role, like so:
         | 
| 259 | 
            +
             | 
| 260 | 
            +
            ```python
         | 
| 261 | 
            +
            messages.append({"role": "tool", "name": "get_current_temperature", "content": "22.0"})
         | 
| 262 | 
            +
            ```
         | 
| 263 | 
            +
             | 
| 264 | 
            +
            After that, you can `generate()` again to let the model use the tool result in the chat:
         | 
| 265 | 
            +
             | 
| 266 | 
            +
            ```python
         | 
| 267 | 
            +
            text = tokenizer.apply_chat_template(messages, tools=[get_current_temperature], add_generation_prompt=True, tokenize=False)
         | 
| 268 | 
            +
            inputs = tokenizer(text, return_tensors="pt", add_special_tokens=False).to(model.device)
         | 
| 269 | 
            +
            outputs = model.generate(**inputs, max_new_tokens=512)
         | 
| 270 | 
            +
            output_text = tokenizer.batch_decode(outputs)[0][len(text):]
         | 
| 271 | 
            +
            ```
         | 
| 272 | 
            +
             | 
| 273 | 
            +
            This should result in the string -
         | 
| 274 | 
            +
            ```
         | 
| 275 | 
            +
            'The current temperature in Paris is 22.0 degrees.<|eot_id|>'
         | 
| 276 | 
            +
            ```
         | 
| 277 | 
            +
             | 
| 278 | 
            +
            ## License
         | 
| 279 | 
            +
            This repository and the model weights are licensed under the [Llama 3.3 Community License Agreement](https://github.com/meta-llama/llama-models/blob/main/models/llama3_3/LICENSE) (Llama models' default license agreement).
         | 
| 280 | 
            +
             | 
| 281 | 
            +
            ## Contact
         | 
| 282 | 
            +
            If you would like to reach out to our team, send an email to [[email protected]]([email protected]).
         | 

