File size: 9,793 Bytes
47dfee0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import argparse

from .constants import SEPERATOR

# parse_train_args
def parse_train_args():
    """
    ----------
    Author: Damon Gwinn
    ----------
    Argparse arguments for training a model
    ----------
    """

    parser = argparse.ArgumentParser()

    parser.add_argument("-input_dir", type=str, default="./dataset/e_piano", help="Folder of preprocessed and pickled midi files")
    parser.add_argument("-output_dir", type=str, default="./saved_models", help="Folder to save model weights. Saves one every epoch")
    parser.add_argument("-weight_modulus", type=int, default=1, help="How often to save epoch weights (ex: value of 10 means save every 10 epochs)")
    parser.add_argument("-print_modulus", type=int, default=1, help="How often to print train results for a batch (batch loss, learn rate, etc.)")

    parser.add_argument("-n_workers", type=int, default=1, help="Number of threads for the dataloader")
    parser.add_argument("--force_cpu", action="store_true", help="Forces model to run on a cpu even when gpu is available")
    parser.add_argument("--no_tensorboard", action="store_true", help="Turns off tensorboard result reporting")

    parser.add_argument("-continue_weights", type=str, default=None, help="Model weights to continue training based on")
    parser.add_argument("-continue_epoch", type=int, default=None, help="Epoch the continue_weights model was at")

    parser.add_argument("-lr", type=float, default=None, help="Constant learn rate. Leave as None for a custom scheduler.")
    parser.add_argument("-ce_smoothing", type=float, default=None, help="Smoothing parameter for smoothed cross entropy loss (defaults to no smoothing)")
    parser.add_argument("-batch_size", type=int, default=2, help="Batch size to use")
    parser.add_argument("-epochs", type=int, default=100, help="Number of epochs to use")

    parser.add_argument("--rpr", action="store_true", help="Use a modified Transformer for Relative Position Representations")
    parser.add_argument("-max_sequence", type=int, default=2048, help="Maximum midi sequence to consider")
    parser.add_argument("-n_layers", type=int, default=6, help="Number of decoder layers to use")
    parser.add_argument("-num_heads", type=int, default=8, help="Number of heads to use for multi-head attention")
    parser.add_argument("-d_model", type=int, default=512, help="Dimension of the model (output dim of embedding layers, etc.)")

    parser.add_argument("-dim_feedforward", type=int, default=1024, help="Dimension of the feedforward layer")

    parser.add_argument("-dropout", type=float, default=0.1, help="Dropout rate")

    return parser.parse_args()

# print_train_args
def print_train_args(args):
    """
    ----------
    Author: Damon Gwinn
    ----------
    Prints training arguments
    ----------
    """

    print(SEPERATOR)
    print("input_dir:", args.input_dir)
    print("output_dir:", args.output_dir)
    print("weight_modulus:", args.weight_modulus)
    print("print_modulus:", args.print_modulus)
    print("")
    print("n_workers:", args.n_workers)
    print("force_cpu:", args.force_cpu)
    print("tensorboard:", not args.no_tensorboard)
    print("")
    print("continue_weights:", args.continue_weights)
    print("continue_epoch:", args.continue_epoch)
    print("")
    print("lr:", args.lr)
    print("ce_smoothing:", args.ce_smoothing)
    print("batch_size:", args.batch_size)
    print("epochs:", args.epochs)
    print("")
    print("rpr:", args.rpr)
    print("max_sequence:", args.max_sequence)
    print("n_layers:", args.n_layers)
    print("num_heads:", args.num_heads)
    print("d_model:", args.d_model)
    print("")
    print("dim_feedforward:", args.dim_feedforward)
    print("dropout:", args.dropout)
    print(SEPERATOR)
    print("")

# parse_eval_args
def parse_eval_args():
    """
    ----------
    Author: Damon Gwinn
    ----------
    Argparse arguments for evaluating a model
    ----------
    """

    parser = argparse.ArgumentParser()

    parser.add_argument("-dataset_dir", type=str, default="./dataset/e_piano", help="Folder of preprocessed and pickled midi files")
    parser.add_argument("-model_weights", type=str, default="./saved_models/model.pickle", help="Pickled model weights file saved with torch.save and model.state_dict()")
    parser.add_argument("-n_workers", type=int, default=1, help="Number of threads for the dataloader")
    parser.add_argument("--force_cpu", action="store_true", help="Forces model to run on a cpu even when gpu is available")

    parser.add_argument("-batch_size", type=int, default=2, help="Batch size to use")

    parser.add_argument("--rpr", action="store_true", help="Use a modified Transformer for Relative Position Representations")
    parser.add_argument("-max_sequence", type=int, default=2048, help="Maximum midi sequence to consider in the model")
    parser.add_argument("-n_layers", type=int, default=6, help="Number of decoder layers to use")
    parser.add_argument("-num_heads", type=int, default=8, help="Number of heads to use for multi-head attention")
    parser.add_argument("-d_model", type=int, default=512, help="Dimension of the model (output dim of embedding layers, etc.)")

    parser.add_argument("-dim_feedforward", type=int, default=1024, help="Dimension of the feedforward layer")

    return parser.parse_args()

# print_eval_args
def print_eval_args(args):
    """
    ----------
    Author: Damon Gwinn
    ----------
    Prints evaluation arguments
    ----------
    """

    print(SEPERATOR)
    print("dataset_dir:", args.dataset_dir)
    print("model_weights:", args.model_weights)
    print("n_workers:", args.n_workers)
    print("force_cpu:", args.force_cpu)
    print("")
    print("batch_size:", args.batch_size)
    print("")
    print("rpr:", args.rpr)
    print("max_sequence:", args.max_sequence)
    print("n_layers:", args.n_layers)
    print("num_heads:", args.num_heads)
    print("d_model:", args.d_model)
    print("")
    print("dim_feedforward:", args.dim_feedforward)
    print(SEPERATOR)
    print("")

# parse_generate_args
def parse_generate_args():
    """
    ----------
    Author: Damon Gwinn
    ----------
    Argparse arguments for generation
    ----------
    """

    parser = argparse.ArgumentParser()

    parser.add_argument("-midi_root", type=str, default="./dataset/e_piano/", help="Midi file to prime the generator with")
    parser.add_argument("-output_dir", type=str, default="./gen", help="Folder to write generated midi to")
    parser.add_argument("-primer_file", type=str, default=None, help="File path or integer index to the evaluation dataset. Default is to select a random index.")
    parser.add_argument("--force_cpu", action="store_true", help="Forces model to run on a cpu even when gpu is available")

    parser.add_argument("-target_seq_length", type=int, default=1024, help="Target length you'd like the midi to be")
    parser.add_argument("-num_prime", type=int, default=256, help="Amount of messages to prime the generator with")
    parser.add_argument("-model_weights", type=str, default="./saved_models/model.pickle", help="Pickled model weights file saved with torch.save and model.state_dict()")
    parser.add_argument("-beam", type=int, default=0, help="Beam search k. 0 for random probability sample and 1 for greedy")

    parser.add_argument("--rpr", action="store_true", help="Use a modified Transformer for Relative Position Representations")
    parser.add_argument("-max_sequence", type=int, default=2048, help="Maximum midi sequence to consider")
    parser.add_argument("-n_layers", type=int, default=6, help="Number of decoder layers to use")
    parser.add_argument("-num_heads", type=int, default=8, help="Number of heads to use for multi-head attention")
    parser.add_argument("-d_model", type=int, default=512, help="Dimension of the model (output dim of embedding layers, etc.)")

    parser.add_argument("-dim_feedforward", type=int, default=1024, help="Dimension of the feedforward layer")

    return parser.parse_args()

# print_generate_args
def print_generate_args(args):
    """
    ----------
    Author: Damon Gwinn
    ----------
    Prints generation arguments
    ----------
    """

    print(SEPERATOR)
    print("midi_root:", args.midi_root)
    print("output_dir:", args.output_dir)
    print("primer_file:", args.primer_file)
    print("force_cpu:", args.force_cpu)
    print("")
    print("target_seq_length:", args.target_seq_length)
    print("num_prime:", args.num_prime)
    print("model_weights:", args.model_weights)
    print("beam:", args.beam)
    print("")
    print("rpr:", args.rpr)
    print("max_sequence:", args.max_sequence)
    print("n_layers:", args.n_layers)
    print("num_heads:", args.num_heads)
    print("d_model:", args.d_model)
    print("")
    print("dim_feedforward:", args.dim_feedforward)
    print(SEPERATOR)
    print("")

# write_model_params
def write_model_params(args, output_file):
    """
    ----------
    Author: Damon Gwinn
    ----------
    Writes given training parameters to text file
    ----------
    """

    o_stream = open(output_file, "w")

    o_stream.write("rpr: " + str(args.rpr) + "\n")
    o_stream.write("lr: " + str(args.lr) + "\n")
    o_stream.write("ce_smoothing: " + str(args.ce_smoothing) + "\n")
    o_stream.write("batch_size: " + str(args.batch_size) + "\n")
    o_stream.write("max_sequence: " + str(args.max_sequence) + "\n")
    o_stream.write("n_layers: " + str(args.n_layers) + "\n")
    o_stream.write("num_heads: " + str(args.num_heads) + "\n")
    o_stream.write("d_model: " + str(args.d_model) + "\n")
    o_stream.write("dim_feedforward: " + str(args.dim_feedforward) + "\n")
    o_stream.write("dropout: " + str(args.dropout) + "\n")

    o_stream.close()