File size: 9,793 Bytes
47dfee0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
import argparse
from .constants import SEPERATOR
# parse_train_args
def parse_train_args():
"""
----------
Author: Damon Gwinn
----------
Argparse arguments for training a model
----------
"""
parser = argparse.ArgumentParser()
parser.add_argument("-input_dir", type=str, default="./dataset/e_piano", help="Folder of preprocessed and pickled midi files")
parser.add_argument("-output_dir", type=str, default="./saved_models", help="Folder to save model weights. Saves one every epoch")
parser.add_argument("-weight_modulus", type=int, default=1, help="How often to save epoch weights (ex: value of 10 means save every 10 epochs)")
parser.add_argument("-print_modulus", type=int, default=1, help="How often to print train results for a batch (batch loss, learn rate, etc.)")
parser.add_argument("-n_workers", type=int, default=1, help="Number of threads for the dataloader")
parser.add_argument("--force_cpu", action="store_true", help="Forces model to run on a cpu even when gpu is available")
parser.add_argument("--no_tensorboard", action="store_true", help="Turns off tensorboard result reporting")
parser.add_argument("-continue_weights", type=str, default=None, help="Model weights to continue training based on")
parser.add_argument("-continue_epoch", type=int, default=None, help="Epoch the continue_weights model was at")
parser.add_argument("-lr", type=float, default=None, help="Constant learn rate. Leave as None for a custom scheduler.")
parser.add_argument("-ce_smoothing", type=float, default=None, help="Smoothing parameter for smoothed cross entropy loss (defaults to no smoothing)")
parser.add_argument("-batch_size", type=int, default=2, help="Batch size to use")
parser.add_argument("-epochs", type=int, default=100, help="Number of epochs to use")
parser.add_argument("--rpr", action="store_true", help="Use a modified Transformer for Relative Position Representations")
parser.add_argument("-max_sequence", type=int, default=2048, help="Maximum midi sequence to consider")
parser.add_argument("-n_layers", type=int, default=6, help="Number of decoder layers to use")
parser.add_argument("-num_heads", type=int, default=8, help="Number of heads to use for multi-head attention")
parser.add_argument("-d_model", type=int, default=512, help="Dimension of the model (output dim of embedding layers, etc.)")
parser.add_argument("-dim_feedforward", type=int, default=1024, help="Dimension of the feedforward layer")
parser.add_argument("-dropout", type=float, default=0.1, help="Dropout rate")
return parser.parse_args()
# print_train_args
def print_train_args(args):
"""
----------
Author: Damon Gwinn
----------
Prints training arguments
----------
"""
print(SEPERATOR)
print("input_dir:", args.input_dir)
print("output_dir:", args.output_dir)
print("weight_modulus:", args.weight_modulus)
print("print_modulus:", args.print_modulus)
print("")
print("n_workers:", args.n_workers)
print("force_cpu:", args.force_cpu)
print("tensorboard:", not args.no_tensorboard)
print("")
print("continue_weights:", args.continue_weights)
print("continue_epoch:", args.continue_epoch)
print("")
print("lr:", args.lr)
print("ce_smoothing:", args.ce_smoothing)
print("batch_size:", args.batch_size)
print("epochs:", args.epochs)
print("")
print("rpr:", args.rpr)
print("max_sequence:", args.max_sequence)
print("n_layers:", args.n_layers)
print("num_heads:", args.num_heads)
print("d_model:", args.d_model)
print("")
print("dim_feedforward:", args.dim_feedforward)
print("dropout:", args.dropout)
print(SEPERATOR)
print("")
# parse_eval_args
def parse_eval_args():
"""
----------
Author: Damon Gwinn
----------
Argparse arguments for evaluating a model
----------
"""
parser = argparse.ArgumentParser()
parser.add_argument("-dataset_dir", type=str, default="./dataset/e_piano", help="Folder of preprocessed and pickled midi files")
parser.add_argument("-model_weights", type=str, default="./saved_models/model.pickle", help="Pickled model weights file saved with torch.save and model.state_dict()")
parser.add_argument("-n_workers", type=int, default=1, help="Number of threads for the dataloader")
parser.add_argument("--force_cpu", action="store_true", help="Forces model to run on a cpu even when gpu is available")
parser.add_argument("-batch_size", type=int, default=2, help="Batch size to use")
parser.add_argument("--rpr", action="store_true", help="Use a modified Transformer for Relative Position Representations")
parser.add_argument("-max_sequence", type=int, default=2048, help="Maximum midi sequence to consider in the model")
parser.add_argument("-n_layers", type=int, default=6, help="Number of decoder layers to use")
parser.add_argument("-num_heads", type=int, default=8, help="Number of heads to use for multi-head attention")
parser.add_argument("-d_model", type=int, default=512, help="Dimension of the model (output dim of embedding layers, etc.)")
parser.add_argument("-dim_feedforward", type=int, default=1024, help="Dimension of the feedforward layer")
return parser.parse_args()
# print_eval_args
def print_eval_args(args):
"""
----------
Author: Damon Gwinn
----------
Prints evaluation arguments
----------
"""
print(SEPERATOR)
print("dataset_dir:", args.dataset_dir)
print("model_weights:", args.model_weights)
print("n_workers:", args.n_workers)
print("force_cpu:", args.force_cpu)
print("")
print("batch_size:", args.batch_size)
print("")
print("rpr:", args.rpr)
print("max_sequence:", args.max_sequence)
print("n_layers:", args.n_layers)
print("num_heads:", args.num_heads)
print("d_model:", args.d_model)
print("")
print("dim_feedforward:", args.dim_feedforward)
print(SEPERATOR)
print("")
# parse_generate_args
def parse_generate_args():
"""
----------
Author: Damon Gwinn
----------
Argparse arguments for generation
----------
"""
parser = argparse.ArgumentParser()
parser.add_argument("-midi_root", type=str, default="./dataset/e_piano/", help="Midi file to prime the generator with")
parser.add_argument("-output_dir", type=str, default="./gen", help="Folder to write generated midi to")
parser.add_argument("-primer_file", type=str, default=None, help="File path or integer index to the evaluation dataset. Default is to select a random index.")
parser.add_argument("--force_cpu", action="store_true", help="Forces model to run on a cpu even when gpu is available")
parser.add_argument("-target_seq_length", type=int, default=1024, help="Target length you'd like the midi to be")
parser.add_argument("-num_prime", type=int, default=256, help="Amount of messages to prime the generator with")
parser.add_argument("-model_weights", type=str, default="./saved_models/model.pickle", help="Pickled model weights file saved with torch.save and model.state_dict()")
parser.add_argument("-beam", type=int, default=0, help="Beam search k. 0 for random probability sample and 1 for greedy")
parser.add_argument("--rpr", action="store_true", help="Use a modified Transformer for Relative Position Representations")
parser.add_argument("-max_sequence", type=int, default=2048, help="Maximum midi sequence to consider")
parser.add_argument("-n_layers", type=int, default=6, help="Number of decoder layers to use")
parser.add_argument("-num_heads", type=int, default=8, help="Number of heads to use for multi-head attention")
parser.add_argument("-d_model", type=int, default=512, help="Dimension of the model (output dim of embedding layers, etc.)")
parser.add_argument("-dim_feedforward", type=int, default=1024, help="Dimension of the feedforward layer")
return parser.parse_args()
# print_generate_args
def print_generate_args(args):
"""
----------
Author: Damon Gwinn
----------
Prints generation arguments
----------
"""
print(SEPERATOR)
print("midi_root:", args.midi_root)
print("output_dir:", args.output_dir)
print("primer_file:", args.primer_file)
print("force_cpu:", args.force_cpu)
print("")
print("target_seq_length:", args.target_seq_length)
print("num_prime:", args.num_prime)
print("model_weights:", args.model_weights)
print("beam:", args.beam)
print("")
print("rpr:", args.rpr)
print("max_sequence:", args.max_sequence)
print("n_layers:", args.n_layers)
print("num_heads:", args.num_heads)
print("d_model:", args.d_model)
print("")
print("dim_feedforward:", args.dim_feedforward)
print(SEPERATOR)
print("")
# write_model_params
def write_model_params(args, output_file):
"""
----------
Author: Damon Gwinn
----------
Writes given training parameters to text file
----------
"""
o_stream = open(output_file, "w")
o_stream.write("rpr: " + str(args.rpr) + "\n")
o_stream.write("lr: " + str(args.lr) + "\n")
o_stream.write("ce_smoothing: " + str(args.ce_smoothing) + "\n")
o_stream.write("batch_size: " + str(args.batch_size) + "\n")
o_stream.write("max_sequence: " + str(args.max_sequence) + "\n")
o_stream.write("n_layers: " + str(args.n_layers) + "\n")
o_stream.write("num_heads: " + str(args.num_heads) + "\n")
o_stream.write("d_model: " + str(args.d_model) + "\n")
o_stream.write("dim_feedforward: " + str(args.dim_feedforward) + "\n")
o_stream.write("dropout: " + str(args.dropout) + "\n")
o_stream.close()
|