NanoMaestro / app.py
utkucoban's picture
NanoMaestro Full model weights released
47dfee0 verified
raw
history blame
12 kB
import gradio as gr
import torch
import os
import random
import glob
import numpy as np
import pretty_midi
import scipy.io.wavfile
# --- Dependencies from your project ---
# (Make sure these files are in the same directory)
try:
from model.music_transformer import MusicTransformer
from processor import encode_midi, decode_midi
from dataset.e_piano import process_midi
from utilities.constants import *
from utilities.device import get_device, use_cuda
except ImportError as e:
print(f"Error: Could not import necessary files.")
print(f"Make sure app.py is in the same folder as 'model', 'processor.py', etc.")
print(f"Details: {e}")
exit()
# --- Your Model's Hyperparameters ---
# (Pulled from your training logs)
MODEL_CONFIG = {
"n_layers": 6,
"num_heads": 8,
"d_model": 512,
"dim_feedforward": 1024,
"max_sequence": 2048,
"rpr": True
}
# ------------------------------------
# Global variable to hold the loaded model
model = None
device = get_device()
print(f"Using device: {device}")
def load_model(model_path):
"""
Loads the trained MusicTransformer model into memory.
"""
global model
if model_path is None or not os.path.exists(model_path):
return "Error: Model file not found. Please check the path."
try:
print("Loading model...")
model = MusicTransformer(
n_layers=MODEL_CONFIG["n_layers"],
num_heads=MODEL_CONFIG["num_heads"],
d_model=MODEL_CONFIG["d_model"],
dim_feedforward=MODEL_CONFIG["dim_feedforward"],
max_sequence=MODEL_CONFIG["max_sequence"],
rpr=MODEL_CONFIG["rpr"]
).to(device)
# Load the weights, mapping to the correct device
model.load_state_dict(
torch.load(model_path, map_location=device, weights_only=True)
)
model.eval()
print("Model loaded successfully.")
return f"Model '{model_path}' loaded successfully."
except Exception as e:
return f"Error loading model: {e}"
# --- NEW FUNCTION ---
def midi_to_wav(midi_file_path, wav_file_path):
"""
Synthesizes a MIDI file to a WAV file using pretty_midi's
built-in (simple) sine wave synthesizer.
"""
try:
pm = pretty_midi.PrettyMIDI(midi_file_path)
# Synthesize the audio at a 44.1kHz sample rate
audio_data = pm.synthesize(fs=44100)
# Write as a 16-bit WAV file
scipy.io.wavfile.write(wav_file_path, 44100, audio_data.astype(np.int16))
return wav_file_path
except Exception as e:
print(f"Error during MIDI to WAV conversion: {e}")
return None
# --- END NEW FUNCTION ---
def generate_music(primer_type, uploaded_midi, upload_start_location, maestro_path, maestro_start_location,
primer_length, generation_length_new, progress=gr.Progress(track_tqdm=True)):
"""
The main function called by the Gradio button.
"""
global model
if model is None:
# --- MODIFICATION: Return 3 values on error ---
yield "Error: Model is not loaded. Please load a model first.", None, None
try:
# --- 1. Prepare the Primer ---
primer = None
num_primer = 0
total_target_length = primer_length + generation_length_new
if total_target_length > MODEL_CONFIG["max_sequence"]:
total_target_length = MODEL_CONFIG["max_sequence"]
yield f"Warning: Clamping to {total_target_length} tokens.", None, None
if primer_type == "Generate from Silence":
yield "Generating from silence...", None, None
primer = torch.tensor([372], dtype=TORCH_LABEL_TYPE, device=device)
num_primer = 1
elif primer_type == "Random Maestro MIDI":
yield "Finding random Maestro file...", None, None
if maestro_path is None or not os.path.isdir(maestro_path):
yield f"Error: Maestro path '{maestro_path}' is not valid.", None, None
return
midi_files = glob.glob(os.path.join(maestro_path, "**", "*.mid"), recursive=True) + \
glob.glob(os.path.join(maestro_path, "**", "*.midi"), recursive=True)
if not midi_files:
yield f"Error: No .mid/.midi files found in '{maestro_path}'.", None, None
return
random_file = random.choice(midi_files)
yield f"Tokenizing random file: {os.path.basename(random_file)}...", None, None
raw_mid = encode_midi(random_file)
is_random_start = (maestro_start_location == "Random Location")
primer_tokens, _ = process_midi(raw_mid, primer_length, random_seq=is_random_start)
primer = torch.tensor(primer_tokens, dtype=TORCH_LABEL_TYPE, device=device)
num_primer = primer.shape[0]
elif primer_type == "Upload My Own MIDI":
if uploaded_midi is None:
yield "Error: Please upload a MIDI file.", None, None
return
yield f"Tokenizing uploaded MIDI: {os.path.basename(uploaded_midi.name)}...", None, None
raw_mid = encode_midi(uploaded_midi.name)
if not raw_mid:
yield "Error: Could not read MIDI messages.", None, None
return
is_random_start = (upload_start_location == "Random Location")
primer_tokens, _ = process_midi(raw_mid, primer_length, random_seq=is_random_start)
primer = torch.tensor(primer_tokens, dtype=TORCH_LABEL_TYPE, device=device)
num_primer = primer.shape[0]
if num_primer == 0:
yield "Error: Primer processing resulted in 0 tokens.", None, None
return
# --- 2. Run Generation ---
yield f"Primed with {num_primer} tokens. Generating {generation_length_new} new tokens...", None, None
primer_batch = primer.unsqueeze(0)
model.eval()
with torch.set_grad_enabled(False):
rand_seq = model.generate(primer_batch, total_target_length, beam=0)
# --- 3. Process and Save Output ---
generated_only_tokens = rand_seq[0][num_primer:]
if len(generated_only_tokens) == 0:
yield "Warning: Generation produced 0 new tokens.", None, None
return
# --- MODIFICATION: Define output paths ---
midi_output_filename = "generation_output.mid"
wav_output_filename = "generation_output.wav"
# Save the MIDI file
decode_midi(generated_only_tokens.cpu().numpy(), midi_output_filename)
# --- MODIFICATION: Synthesize MIDI to WAV ---
yield "Synthesizing audio...", midi_output_filename, None
wav_path = midi_to_wav(midi_output_filename, wav_output_filename)
if wav_path:
yield "Generation Complete!", midi_output_filename, wav_path
else:
yield "Generation complete (WAV synthesis failed).", midi_output_filename, None
except Exception as e:
yield f"An error occurred: {e}", None, None
# --- Build the Gradio UI ---
with gr.Blocks(theme=gr.themes.Soft()) as app:
gr.Markdown("# 🎹 Music Transformer Generation UI")
gr.Markdown("Load your trained model and generate music from silence, a random seed, or your own MIDI file.")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### 1. Load Model")
model_path_input = gr.Textbox(
label="Path to your .pickle model file",
value="best_acc_weights.pickle"
)
load_button = gr.Button("Load Model", variant="primary")
load_status = gr.Textbox(label="Model Status", interactive=False)
with gr.Column(scale=2):
gr.Markdown("### 2. Configure Generation")
primer_type_input = gr.Radio(
label="Choose Primer Type",
choices=["Generate from Silence", "Random Maestro MIDI", "Upload My Own MIDI"],
value="Generate from Silence"
)
with gr.Column(visible=False) as maestro_options:
maestro_path_input = gr.Textbox(
label="Path to RAW Maestro MIDI Folder (searches all subfolders)",
value="./maestro-v2.0.0"
)
maestro_start_location_input = gr.Radio(
label="Primer Start Location",
choices=["Start of File", "Random Location"],
value="Random Location",
info="Selects a random chunk from the file, giving more variety."
)
with gr.Column(visible=False) as upload_options:
uploaded_midi_input = gr.File(
label="Upload Your MIDI Primer",
file_types=[".mid", ".midi"]
)
upload_start_location_input = gr.Radio(
label="Primer Start Location",
choices=["Start of File", "Random Location"],
value="Start of File"
)
primer_length_slider = gr.Slider(
label="Primer Length (Tokens)",
minimum=64,
maximum=2000,
value=512,
step=32,
info="How many tokens to use from the primer file. Ignored for 'Silence'."
)
generation_length_slider = gr.Slider(
label="New Tokens to Generate",
minimum=128,
maximum=2048,
value=1024,
step=32,
info="How many new tokens to create after the primer."
)
generate_button = gr.Button("Generate Music", variant="primary")
with gr.Row():
gr.Markdown("### 3. Get Your Music")
status_output = gr.Textbox(label="Status", interactive=False)
with gr.Row():
output_midi_file = gr.File(label="Download Generated MIDI")
# --- MODIFICATION: Added Audio player ---
output_wav_file = gr.Audio(label="Listen to Generated WAV", type="filepath")
# --- END MODIFICATION ---
# --- UI Event Listeners ---
def update_ui(primer_type):
return {
maestro_options: gr.Column(visible=(primer_type == "Random Maestro MIDI")),
upload_options: gr.Column(visible=(primer_type == "Upload My Own MIDI")),
primer_length_slider: gr.Slider(visible=(primer_type != "Generate from Silence"))
}
primer_type_input.change(
fn=update_ui,
inputs=primer_type_input,
outputs=[maestro_options, upload_options, primer_length_slider]
)
load_button.click(
fn=load_model,
inputs=model_path_input,
outputs=load_status
)
# --- MODIFICATION: Updated outputs list ---
generate_button.click(
fn=generate_music,
inputs=[
primer_type_input,
uploaded_midi_input,
upload_start_location_input,
maestro_path_input,
maestro_start_location_input,
primer_length_slider,
generation_length_slider
],
outputs=[status_output, output_midi_file, output_wav_file] # <-- Added WAV output
)
# --- END MODIFICATION ---
if __name__ == "__main__":
# Check if CUDA is available and set device
if (not torch.cuda.is_available()):
print("----- WARNING: CUDA devices not detected. This will cause the model to run very slow! -----")
use_cuda(False)
print("Launching Gradio UI...")
app.launch()