import torch import torch.nn as nn from torch.nn.modules.normalization import LayerNorm import random from utilities.constants import * from utilities.device import get_device from .positional_encoding import PositionalEncoding from .rpr import TransformerEncoderRPR, TransformerEncoderLayerRPR # MusicTransformer class MusicTransformer(nn.Module): def __init__(self, n_layers=6, num_heads=8, d_model=512, dim_feedforward=1024, dropout=0.1, max_sequence=2048, rpr=False): super(MusicTransformer, self).__init__() self.dummy = DummyDecoder() self.nlayers = n_layers self.nhead = num_heads self.d_model = d_model self.d_ff = dim_feedforward self.dropout = dropout self.max_seq = max_sequence self.rpr = rpr # Input embedding self.embedding = nn.Embedding(VOCAB_SIZE, self.d_model) # Positional encoding self.positional_encoding = PositionalEncoding(self.d_model, self.dropout, self.max_seq) # Base transformer if(not self.rpr): self.transformer = nn.Transformer( d_model=self.d_model, nhead=self.nhead, num_encoder_layers=self.nlayers, num_decoder_layers=0, dropout=self.dropout, dim_feedforward=self.d_ff, custom_decoder=self.dummy ) else: encoder_norm = LayerNorm(self.d_model) encoder_layer = TransformerEncoderLayerRPR(self.d_model, self.nhead, self.d_ff, self.dropout, er_len=self.max_seq) encoder = TransformerEncoderRPR(encoder_layer, self.nlayers, encoder_norm) self.transformer = nn.Transformer( d_model=self.d_model, nhead=self.nhead, num_encoder_layers=self.nlayers, num_decoder_layers=0, dropout=self.dropout, dim_feedforward=self.d_ff, custom_decoder=self.dummy, custom_encoder=encoder ) # Final output is a softmaxed linear layer self.Wout = nn.Linear(self.d_model, VOCAB_SIZE) self.softmax = nn.Softmax(dim=-1) # forward def forward(self, x, mask=True): # --- FIX: USE DEVICE OF INPUT TENSOR x --- if(mask is True): # Generate mask on the same device as input x mask = self.transformer.generate_square_subsequent_mask(x.shape[1]).to(x.device) else: mask = None # ----------------------------------------- x = self.embedding(x) # Input shape is (max_seq, batch_size, d_model) x = x.permute(1,0,2) x = self.positional_encoding(x) # Since there are no true decoder layers, the tgt is unused x_out = self.transformer(src=x, tgt=x, src_mask=mask) # Back to (batch_size, max_seq, d_model) x_out = x_out.permute(1,0,2) y = self.Wout(x_out) return y # generate def generate(self, primer=None, target_seq_length=1024, beam=0, beam_chance=1.0): assert (not self.training), "Cannot generate while in training mode" print("Generating sequence of max length:", target_seq_length) batch_size = primer.shape[0] gen_seq = torch.full((batch_size, target_seq_length), TOKEN_PAD, dtype=TORCH_LABEL_TYPE, device=get_device()) num_primer = primer.shape[1] gen_seq[..., :num_primer] = primer.type(TORCH_LABEL_TYPE).to(get_device()) cur_i = num_primer while(cur_i < target_seq_length): y = self.softmax(self.forward(gen_seq[..., :cur_i]))[..., :TOKEN_END] token_probs = y[:, cur_i-1, :] if(beam == 0): beam_ran = 2.0 else: beam_ran = random.uniform(0,1) if(beam_ran <= beam_chance): token_probs = token_probs.flatten() top_res, top_i = torch.topk(token_probs, beam) beam_rows = top_i // VOCAB_SIZE beam_cols = top_i % VOCAB_SIZE gen_seq = gen_seq[beam_rows, :] gen_seq[..., cur_i] = beam_cols else: distrib = torch.distributions.categorical.Categorical(probs=token_probs) next_token = distrib.sample() gen_seq[:, cur_i] = next_token if(next_token == TOKEN_END): print("Model called end of sequence at:", cur_i, "/", target_seq_length) break cur_i += 1 if(cur_i % 50 == 0): print(cur_i, "/", target_seq_length) return gen_seq[:, :cur_i] # Used as a dummy to nn.Transformer class DummyDecoder(nn.Module): def __init__(self): super(DummyDecoder, self).__init__() def forward(self, tgt, memory, tgt_mask, memory_mask,tgt_key_padding_mask,memory_key_padding_mask, **kwargs): return memory