SyedA5688 commited on
Commit
620ea66
·
verified ·
1 Parent(s): 35c611f

Update license information in model card

Browse files
Files changed (1) hide show
  1. README.md +15 -8
README.md CHANGED
@@ -1,5 +1,5 @@
1
  ---
2
- license: cc0-1.0
3
  language:
4
  - en
5
  base_model: google/gemma-2-2b
@@ -8,8 +8,16 @@ pipeline_tag: text-generation
8
  tags:
9
  - biology
10
  - scRNAseq
11
- - single-cell
12
- - gemma-2
 
 
 
 
 
 
 
 
13
  ---
14
 
15
  # C2S-Scale-Gemma-2B model card
@@ -51,7 +59,7 @@ classification, and generating biologically meaningful cell representations.
51
 
52
  * Versatility: Demonstrates strong performance across a diverse set of single-cell and multi-cell tasks.
53
  * Scalability: Trained on a massive dataset of over 57 million cells, showcasing the power of scaling LLMs for biological data.
54
- * Generative Power: Capable of generating realistic single-cell gene expression profiles, both conditionally and unconditionally.
55
  * Foundation for Fine-tuning: Can serve as a powerful pretrained foundation for specialized, domain-specific single-cell analysis tasks.
56
 
57
  **Potential Applications**
@@ -113,7 +121,7 @@ model = AutoModelForCausalLM.from_pretrained(
113
  ).to(device)
114
 
115
  # Format prompt (see previous section)
116
- cell_sentence = "MALAT1 TMSB4X B2M EEF1A1 H3F3B ACTB FTL RPL13 ..." # Truncated for example purposes
117
  num_genes = 1000
118
  organism = "Homo sapiens"
119
 
@@ -183,8 +191,7 @@ established best practices for splitting data to ensure robust and unbiased asse
183
 
184
  ## License
185
 
186
- The model weights are released under the Creative Commons Zero v1.0 Universal (CC0 1.0) license.
187
- The underlying codebase for the Cell2Sentence project is licensed under CC BY-NC-ND 4.0.
188
 
189
  ## Implementation information
190
 
@@ -241,4 +248,4 @@ C2S-Scale provides a powerful, versatile, and scalable tool for single-cell anal
241
  # Gemma-2 Links
242
  - HuggingFace: https://huggingface.co/google/gemma-2-2b
243
  - Gemma-2 Blog Post: [Gemma explained: What's new in Gemma 2](https://developers.googleblog.com/en/gemma-explained-new-in-gemma-2/)
244
- - Technical report: https://storage.googleapis.com/deepmind-media/gemma/gemma-2-report.pdf
 
1
  ---
2
+ license: cc-by-4.0
3
  language:
4
  - en
5
  base_model: google/gemma-2-2b
 
8
  tags:
9
  - biology
10
  - scRNAseq
11
+ - Gemma-2
12
+ - genomics
13
+ - computational-biology
14
+ - bioinformatics
15
+ - gene-expression
16
+ - cell-biology
17
+ - transformers
18
+ - pytorch
19
+ - cell-type-annotation
20
+ - Question Answering
21
  ---
22
 
23
  # C2S-Scale-Gemma-2B model card
 
59
 
60
  * Versatility: Demonstrates strong performance across a diverse set of single-cell and multi-cell tasks.
61
  * Scalability: Trained on a massive dataset of over 57 million cells, showcasing the power of scaling LLMs for biological data.
62
+ * Generative Power: Capable of generating realistic single-cell gene expression profiles.
63
  * Foundation for Fine-tuning: Can serve as a powerful pretrained foundation for specialized, domain-specific single-cell analysis tasks.
64
 
65
  **Potential Applications**
 
121
  ).to(device)
122
 
123
  # Format prompt (see previous section)
124
+ cell_sentence = "MALAT1 TMSB4X B2M EEF1A1 H3F3B ACTB FTL RPL13 ..." # Truncated for example, use at least 200 genes for inference
125
  num_genes = 1000
126
  organism = "Homo sapiens"
127
 
 
191
 
192
  ## License
193
 
194
+ The model weights shared on Huggingface are CC-by-4.0.
 
195
 
196
  ## Implementation information
197
 
 
248
  # Gemma-2 Links
249
  - HuggingFace: https://huggingface.co/google/gemma-2-2b
250
  - Gemma-2 Blog Post: [Gemma explained: What's new in Gemma 2](https://developers.googleblog.com/en/gemma-explained-new-in-gemma-2/)
251
+ - Technical report: https://storage.googleapis.com/deepmind-media/gemma/gemma-2-report.pdf