pushing files to the repo from the example!
Browse files- README.md +235 -0
- config.json +195 -0
- skops-3voi5107.pkl +3 -0
README.md
ADDED
|
@@ -0,0 +1,235 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: sklearn
|
| 3 |
+
tags:
|
| 4 |
+
- sklearn
|
| 5 |
+
- skops
|
| 6 |
+
- tabular-classification
|
| 7 |
+
widget:
|
| 8 |
+
structuredData:
|
| 9 |
+
area error:
|
| 10 |
+
- 30.29
|
| 11 |
+
- 96.05
|
| 12 |
+
- 48.31
|
| 13 |
+
compactness error:
|
| 14 |
+
- 0.01911
|
| 15 |
+
- 0.01652
|
| 16 |
+
- 0.01484
|
| 17 |
+
concave points error:
|
| 18 |
+
- 0.01037
|
| 19 |
+
- 0.0137
|
| 20 |
+
- 0.01093
|
| 21 |
+
concavity error:
|
| 22 |
+
- 0.02701
|
| 23 |
+
- 0.02269
|
| 24 |
+
- 0.02813
|
| 25 |
+
fractal dimension error:
|
| 26 |
+
- 0.003586
|
| 27 |
+
- 0.001698
|
| 28 |
+
- 0.002461
|
| 29 |
+
mean area:
|
| 30 |
+
- 481.9
|
| 31 |
+
- 1130.0
|
| 32 |
+
- 748.9
|
| 33 |
+
mean compactness:
|
| 34 |
+
- 0.1058
|
| 35 |
+
- 0.1029
|
| 36 |
+
- 0.1223
|
| 37 |
+
mean concave points:
|
| 38 |
+
- 0.03821
|
| 39 |
+
- 0.07951
|
| 40 |
+
- 0.08087
|
| 41 |
+
mean concavity:
|
| 42 |
+
- 0.08005
|
| 43 |
+
- 0.108
|
| 44 |
+
- 0.1466
|
| 45 |
+
mean fractal dimension:
|
| 46 |
+
- 0.06373
|
| 47 |
+
- 0.05461
|
| 48 |
+
- 0.05796
|
| 49 |
+
mean perimeter:
|
| 50 |
+
- 81.09
|
| 51 |
+
- 123.6
|
| 52 |
+
- 101.7
|
| 53 |
+
mean radius:
|
| 54 |
+
- 12.47
|
| 55 |
+
- 18.94
|
| 56 |
+
- 15.46
|
| 57 |
+
mean smoothness:
|
| 58 |
+
- 0.09965
|
| 59 |
+
- 0.09009
|
| 60 |
+
- 0.1092
|
| 61 |
+
mean symmetry:
|
| 62 |
+
- 0.1925
|
| 63 |
+
- 0.1582
|
| 64 |
+
- 0.1931
|
| 65 |
+
mean texture:
|
| 66 |
+
- 18.6
|
| 67 |
+
- 21.31
|
| 68 |
+
- 19.48
|
| 69 |
+
perimeter error:
|
| 70 |
+
- 2.497
|
| 71 |
+
- 5.486
|
| 72 |
+
- 3.094
|
| 73 |
+
radius error:
|
| 74 |
+
- 0.3961
|
| 75 |
+
- 0.7888
|
| 76 |
+
- 0.4743
|
| 77 |
+
smoothness error:
|
| 78 |
+
- 0.006953
|
| 79 |
+
- 0.004444
|
| 80 |
+
- 0.00624
|
| 81 |
+
symmetry error:
|
| 82 |
+
- 0.01782
|
| 83 |
+
- 0.01386
|
| 84 |
+
- 0.01397
|
| 85 |
+
texture error:
|
| 86 |
+
- 1.044
|
| 87 |
+
- 0.7975
|
| 88 |
+
- 0.7859
|
| 89 |
+
worst area:
|
| 90 |
+
- 677.9
|
| 91 |
+
- 1866.0
|
| 92 |
+
- 1156.0
|
| 93 |
+
worst compactness:
|
| 94 |
+
- 0.2378
|
| 95 |
+
- 0.2336
|
| 96 |
+
- 0.2394
|
| 97 |
+
worst concave points:
|
| 98 |
+
- 0.1015
|
| 99 |
+
- 0.1789
|
| 100 |
+
- 0.1514
|
| 101 |
+
worst concavity:
|
| 102 |
+
- 0.2671
|
| 103 |
+
- 0.2687
|
| 104 |
+
- 0.3791
|
| 105 |
+
worst fractal dimension:
|
| 106 |
+
- 0.0875
|
| 107 |
+
- 0.06589
|
| 108 |
+
- 0.08019
|
| 109 |
+
worst perimeter:
|
| 110 |
+
- 96.05
|
| 111 |
+
- 165.9
|
| 112 |
+
- 124.9
|
| 113 |
+
worst radius:
|
| 114 |
+
- 14.97
|
| 115 |
+
- 24.86
|
| 116 |
+
- 19.26
|
| 117 |
+
worst smoothness:
|
| 118 |
+
- 0.1426
|
| 119 |
+
- 0.1193
|
| 120 |
+
- 0.1546
|
| 121 |
+
worst symmetry:
|
| 122 |
+
- 0.3014
|
| 123 |
+
- 0.2551
|
| 124 |
+
- 0.2837
|
| 125 |
+
worst texture:
|
| 126 |
+
- 24.64
|
| 127 |
+
- 26.58
|
| 128 |
+
- 26.0
|
| 129 |
+
---
|
| 130 |
+
|
| 131 |
+
# Model description
|
| 132 |
+
|
| 133 |
+
[More Information Needed]
|
| 134 |
+
|
| 135 |
+
## Intended uses & limitations
|
| 136 |
+
|
| 137 |
+
[More Information Needed]
|
| 138 |
+
|
| 139 |
+
## Training Procedure
|
| 140 |
+
|
| 141 |
+
### Hyperparameters
|
| 142 |
+
|
| 143 |
+
The model is trained with below hyperparameters.
|
| 144 |
+
|
| 145 |
+
<details>
|
| 146 |
+
<summary> Click to expand </summary>
|
| 147 |
+
|
| 148 |
+
| Hyperparameter | Value |
|
| 149 |
+
|---------------------------------|----------------------------------------------------------|
|
| 150 |
+
| aggressive_elimination | False |
|
| 151 |
+
| cv | 5 |
|
| 152 |
+
| error_score | nan |
|
| 153 |
+
| estimator__categorical_features | |
|
| 154 |
+
| estimator__early_stopping | auto |
|
| 155 |
+
| estimator__l2_regularization | 0.0 |
|
| 156 |
+
| estimator__learning_rate | 0.1 |
|
| 157 |
+
| estimator__loss | auto |
|
| 158 |
+
| estimator__max_bins | 255 |
|
| 159 |
+
| estimator__max_depth | |
|
| 160 |
+
| estimator__max_iter | 100 |
|
| 161 |
+
| estimator__max_leaf_nodes | 31 |
|
| 162 |
+
| estimator__min_samples_leaf | 20 |
|
| 163 |
+
| estimator__monotonic_cst | |
|
| 164 |
+
| estimator__n_iter_no_change | 10 |
|
| 165 |
+
| estimator__random_state | |
|
| 166 |
+
| estimator__scoring | loss |
|
| 167 |
+
| estimator__tol | 1e-07 |
|
| 168 |
+
| estimator__validation_fraction | 0.1 |
|
| 169 |
+
| estimator__verbose | 0 |
|
| 170 |
+
| estimator__warm_start | False |
|
| 171 |
+
| estimator | HistGradientBoostingClassifier() |
|
| 172 |
+
| factor | 3 |
|
| 173 |
+
| max_resources | auto |
|
| 174 |
+
| min_resources | exhaust |
|
| 175 |
+
| n_jobs | -1 |
|
| 176 |
+
| param_grid | {'max_leaf_nodes': [5, 10, 15], 'max_depth': [2, 5, 10]} |
|
| 177 |
+
| random_state | 42 |
|
| 178 |
+
| refit | True |
|
| 179 |
+
| resource | n_samples |
|
| 180 |
+
| return_train_score | True |
|
| 181 |
+
| scoring | |
|
| 182 |
+
| verbose | 0 |
|
| 183 |
+
|
| 184 |
+
</details>
|
| 185 |
+
|
| 186 |
+
### Model Plot
|
| 187 |
+
|
| 188 |
+
The model plot is below.
|
| 189 |
+
|
| 190 |
+
<style>#sk-3de79340-4ee5-4aee-9c89-b3b7696153ce {color: black;background-color: white;}#sk-3de79340-4ee5-4aee-9c89-b3b7696153ce pre{padding: 0;}#sk-3de79340-4ee5-4aee-9c89-b3b7696153ce div.sk-toggleable {background-color: white;}#sk-3de79340-4ee5-4aee-9c89-b3b7696153ce label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-3de79340-4ee5-4aee-9c89-b3b7696153ce label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-3de79340-4ee5-4aee-9c89-b3b7696153ce label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-3de79340-4ee5-4aee-9c89-b3b7696153ce div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-3de79340-4ee5-4aee-9c89-b3b7696153ce div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-3de79340-4ee5-4aee-9c89-b3b7696153ce div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-3de79340-4ee5-4aee-9c89-b3b7696153ce input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-3de79340-4ee5-4aee-9c89-b3b7696153ce input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-3de79340-4ee5-4aee-9c89-b3b7696153ce div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-3de79340-4ee5-4aee-9c89-b3b7696153ce div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-3de79340-4ee5-4aee-9c89-b3b7696153ce input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-3de79340-4ee5-4aee-9c89-b3b7696153ce div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-3de79340-4ee5-4aee-9c89-b3b7696153ce div.sk-estimator:hover {background-color: #d4ebff;}#sk-3de79340-4ee5-4aee-9c89-b3b7696153ce div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-3de79340-4ee5-4aee-9c89-b3b7696153ce div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-3de79340-4ee5-4aee-9c89-b3b7696153ce div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-3de79340-4ee5-4aee-9c89-b3b7696153ce div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-3de79340-4ee5-4aee-9c89-b3b7696153ce div.sk-item {z-index: 1;}#sk-3de79340-4ee5-4aee-9c89-b3b7696153ce div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-3de79340-4ee5-4aee-9c89-b3b7696153ce div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-3de79340-4ee5-4aee-9c89-b3b7696153ce div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-3de79340-4ee5-4aee-9c89-b3b7696153ce div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-3de79340-4ee5-4aee-9c89-b3b7696153ce div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-3de79340-4ee5-4aee-9c89-b3b7696153ce div.sk-parallel-item:only-child::after {width: 0;}#sk-3de79340-4ee5-4aee-9c89-b3b7696153ce div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-3de79340-4ee5-4aee-9c89-b3b7696153ce div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-3de79340-4ee5-4aee-9c89-b3b7696153ce div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-3de79340-4ee5-4aee-9c89-b3b7696153ce div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-3de79340-4ee5-4aee-9c89-b3b7696153ce div.sk-text-repr-fallback {display: none;}</style><div id="sk-3de79340-4ee5-4aee-9c89-b3b7696153ce" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>HalvingGridSearchCV(estimator=HistGradientBoostingClassifier(), n_jobs=-1,param_grid={'max_depth': [2, 5, 10],'max_leaf_nodes': [5, 10, 15]},random_state=42)</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="474afc8c-e67d-430c-9432-eedced794614" type="checkbox" ><label for="474afc8c-e67d-430c-9432-eedced794614" class="sk-toggleable__label sk-toggleable__label-arrow">HalvingGridSearchCV</label><div class="sk-toggleable__content"><pre>HalvingGridSearchCV(estimator=HistGradientBoostingClassifier(), n_jobs=-1,param_grid={'max_depth': [2, 5, 10],'max_leaf_nodes': [5, 10, 15]},random_state=42)</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="cf1d66b1-cfe8-40b1-b6e9-7a62640add17" type="checkbox" ><label for="cf1d66b1-cfe8-40b1-b6e9-7a62640add17" class="sk-toggleable__label sk-toggleable__label-arrow">HistGradientBoostingClassifier</label><div class="sk-toggleable__content"><pre>HistGradientBoostingClassifier()</pre></div></div></div></div></div></div></div></div></div></div>
|
| 191 |
+
|
| 192 |
+
## Evaluation Results
|
| 193 |
+
|
| 194 |
+
You can find the details about evaluation process and the evaluation results.
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
| Metric | Value |
|
| 199 |
+
|----------|---------|
|
| 200 |
+
|
| 201 |
+
# How to Get Started with the Model
|
| 202 |
+
|
| 203 |
+
Use the code below to get started with the model.
|
| 204 |
+
|
| 205 |
+
<details>
|
| 206 |
+
<summary> Click to expand </summary>
|
| 207 |
+
|
| 208 |
+
```python
|
| 209 |
+
[More Information Needed]
|
| 210 |
+
```
|
| 211 |
+
|
| 212 |
+
</details>
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
|
| 217 |
+
# Model Card Authors
|
| 218 |
+
|
| 219 |
+
This model card is written by following authors:
|
| 220 |
+
|
| 221 |
+
[More Information Needed]
|
| 222 |
+
|
| 223 |
+
# Model Card Contact
|
| 224 |
+
|
| 225 |
+
You can contact the model card authors through following channels:
|
| 226 |
+
[More Information Needed]
|
| 227 |
+
|
| 228 |
+
# Citation
|
| 229 |
+
|
| 230 |
+
Below you can find information related to citation.
|
| 231 |
+
|
| 232 |
+
**BibTeX:**
|
| 233 |
+
```
|
| 234 |
+
[More Information Needed]
|
| 235 |
+
```
|
config.json
ADDED
|
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"sklearn": {
|
| 3 |
+
"columns": [
|
| 4 |
+
"mean radius",
|
| 5 |
+
"mean texture",
|
| 6 |
+
"mean perimeter",
|
| 7 |
+
"mean area",
|
| 8 |
+
"mean smoothness",
|
| 9 |
+
"mean compactness",
|
| 10 |
+
"mean concavity",
|
| 11 |
+
"mean concave points",
|
| 12 |
+
"mean symmetry",
|
| 13 |
+
"mean fractal dimension",
|
| 14 |
+
"radius error",
|
| 15 |
+
"texture error",
|
| 16 |
+
"perimeter error",
|
| 17 |
+
"area error",
|
| 18 |
+
"smoothness error",
|
| 19 |
+
"compactness error",
|
| 20 |
+
"concavity error",
|
| 21 |
+
"concave points error",
|
| 22 |
+
"symmetry error",
|
| 23 |
+
"fractal dimension error",
|
| 24 |
+
"worst radius",
|
| 25 |
+
"worst texture",
|
| 26 |
+
"worst perimeter",
|
| 27 |
+
"worst area",
|
| 28 |
+
"worst smoothness",
|
| 29 |
+
"worst compactness",
|
| 30 |
+
"worst concavity",
|
| 31 |
+
"worst concave points",
|
| 32 |
+
"worst symmetry",
|
| 33 |
+
"worst fractal dimension"
|
| 34 |
+
],
|
| 35 |
+
"environment": [
|
| 36 |
+
"scikit-learn=1.0.2"
|
| 37 |
+
],
|
| 38 |
+
"example_input": {
|
| 39 |
+
"area error": [
|
| 40 |
+
30.29,
|
| 41 |
+
96.05,
|
| 42 |
+
48.31
|
| 43 |
+
],
|
| 44 |
+
"compactness error": [
|
| 45 |
+
0.01911,
|
| 46 |
+
0.01652,
|
| 47 |
+
0.01484
|
| 48 |
+
],
|
| 49 |
+
"concave points error": [
|
| 50 |
+
0.01037,
|
| 51 |
+
0.0137,
|
| 52 |
+
0.01093
|
| 53 |
+
],
|
| 54 |
+
"concavity error": [
|
| 55 |
+
0.02701,
|
| 56 |
+
0.02269,
|
| 57 |
+
0.02813
|
| 58 |
+
],
|
| 59 |
+
"fractal dimension error": [
|
| 60 |
+
0.003586,
|
| 61 |
+
0.001698,
|
| 62 |
+
0.002461
|
| 63 |
+
],
|
| 64 |
+
"mean area": [
|
| 65 |
+
481.9,
|
| 66 |
+
1130.0,
|
| 67 |
+
748.9
|
| 68 |
+
],
|
| 69 |
+
"mean compactness": [
|
| 70 |
+
0.1058,
|
| 71 |
+
0.1029,
|
| 72 |
+
0.1223
|
| 73 |
+
],
|
| 74 |
+
"mean concave points": [
|
| 75 |
+
0.03821,
|
| 76 |
+
0.07951,
|
| 77 |
+
0.08087
|
| 78 |
+
],
|
| 79 |
+
"mean concavity": [
|
| 80 |
+
0.08005,
|
| 81 |
+
0.108,
|
| 82 |
+
0.1466
|
| 83 |
+
],
|
| 84 |
+
"mean fractal dimension": [
|
| 85 |
+
0.06373,
|
| 86 |
+
0.05461,
|
| 87 |
+
0.05796
|
| 88 |
+
],
|
| 89 |
+
"mean perimeter": [
|
| 90 |
+
81.09,
|
| 91 |
+
123.6,
|
| 92 |
+
101.7
|
| 93 |
+
],
|
| 94 |
+
"mean radius": [
|
| 95 |
+
12.47,
|
| 96 |
+
18.94,
|
| 97 |
+
15.46
|
| 98 |
+
],
|
| 99 |
+
"mean smoothness": [
|
| 100 |
+
0.09965,
|
| 101 |
+
0.09009,
|
| 102 |
+
0.1092
|
| 103 |
+
],
|
| 104 |
+
"mean symmetry": [
|
| 105 |
+
0.1925,
|
| 106 |
+
0.1582,
|
| 107 |
+
0.1931
|
| 108 |
+
],
|
| 109 |
+
"mean texture": [
|
| 110 |
+
18.6,
|
| 111 |
+
21.31,
|
| 112 |
+
19.48
|
| 113 |
+
],
|
| 114 |
+
"perimeter error": [
|
| 115 |
+
2.497,
|
| 116 |
+
5.486,
|
| 117 |
+
3.094
|
| 118 |
+
],
|
| 119 |
+
"radius error": [
|
| 120 |
+
0.3961,
|
| 121 |
+
0.7888,
|
| 122 |
+
0.4743
|
| 123 |
+
],
|
| 124 |
+
"smoothness error": [
|
| 125 |
+
0.006953,
|
| 126 |
+
0.004444,
|
| 127 |
+
0.00624
|
| 128 |
+
],
|
| 129 |
+
"symmetry error": [
|
| 130 |
+
0.01782,
|
| 131 |
+
0.01386,
|
| 132 |
+
0.01397
|
| 133 |
+
],
|
| 134 |
+
"texture error": [
|
| 135 |
+
1.044,
|
| 136 |
+
0.7975,
|
| 137 |
+
0.7859
|
| 138 |
+
],
|
| 139 |
+
"worst area": [
|
| 140 |
+
677.9,
|
| 141 |
+
1866.0,
|
| 142 |
+
1156.0
|
| 143 |
+
],
|
| 144 |
+
"worst compactness": [
|
| 145 |
+
0.2378,
|
| 146 |
+
0.2336,
|
| 147 |
+
0.2394
|
| 148 |
+
],
|
| 149 |
+
"worst concave points": [
|
| 150 |
+
0.1015,
|
| 151 |
+
0.1789,
|
| 152 |
+
0.1514
|
| 153 |
+
],
|
| 154 |
+
"worst concavity": [
|
| 155 |
+
0.2671,
|
| 156 |
+
0.2687,
|
| 157 |
+
0.3791
|
| 158 |
+
],
|
| 159 |
+
"worst fractal dimension": [
|
| 160 |
+
0.0875,
|
| 161 |
+
0.06589,
|
| 162 |
+
0.08019
|
| 163 |
+
],
|
| 164 |
+
"worst perimeter": [
|
| 165 |
+
96.05,
|
| 166 |
+
165.9,
|
| 167 |
+
124.9
|
| 168 |
+
],
|
| 169 |
+
"worst radius": [
|
| 170 |
+
14.97,
|
| 171 |
+
24.86,
|
| 172 |
+
19.26
|
| 173 |
+
],
|
| 174 |
+
"worst smoothness": [
|
| 175 |
+
0.1426,
|
| 176 |
+
0.1193,
|
| 177 |
+
0.1546
|
| 178 |
+
],
|
| 179 |
+
"worst symmetry": [
|
| 180 |
+
0.3014,
|
| 181 |
+
0.2551,
|
| 182 |
+
0.2837
|
| 183 |
+
],
|
| 184 |
+
"worst texture": [
|
| 185 |
+
24.64,
|
| 186 |
+
26.58,
|
| 187 |
+
26.0
|
| 188 |
+
]
|
| 189 |
+
},
|
| 190 |
+
"model": {
|
| 191 |
+
"file": "skops-3voi5107.pkl"
|
| 192 |
+
},
|
| 193 |
+
"task": "tabular-classification"
|
| 194 |
+
}
|
| 195 |
+
}
|
skops-3voi5107.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cabe955e69f715742849ab49fddfac2899d674db0802608d66b1d61d9016c718
|
| 3 |
+
size 242801
|