manu commited on
Commit
e259610
·
verified ·
1 Parent(s): cebca1f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +87 -166
README.md CHANGED
@@ -1,202 +1,123 @@
1
  ---
2
  base_model: vidore/colqwen2.5omni-base
3
- library_name: peft
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
 
 
9
 
 
10
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
 
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
 
18
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
 
 
 
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
 
39
 
40
- ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
 
 
 
43
 
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
 
 
 
 
 
 
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
49
 
50
- [More Information Needed]
51
 
52
- ### Out-of-Scope Use
 
 
 
 
 
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
 
 
 
 
 
55
 
56
- [More Information Needed]
 
57
 
58
- ## Bias, Risks, and Limitations
 
 
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
 
 
61
 
62
- [More Information Needed]
63
 
64
- ### Recommendations
 
 
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
 
 
69
 
70
- ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
73
 
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
200
- ### Framework versions
201
-
202
- - PEFT 0.15.2
 
1
  ---
2
  base_model: vidore/colqwen2.5omni-base
3
+ license: mit
4
+ library_name: colpali
5
+ language:
6
+ - en
7
+ tags:
8
+ - colpali
9
+ - vidore
10
+ - vidore-experimental
11
+ pipeline_tag: visual-document-retrieval
12
  ---
13
 
14
+ # ColQwen2.5-Omni: Visual+Audio Retriever based on Qwen2.5-Omni-3B-Instruct with ColBERT strategy
15
 
16
+ ColQwen-Omni is a model based on a novel model architecture and training strategy based on Omnimodal Language Models to efficiently index documents from their visual features.
17
+ It is a Qwen2.5-Omni-3B extension that generates [ColBERT](https://arxiv.org/abs/2004.12832)- style multi-vector representations of text and images.
18
+ It was introduced in the paper [ColPali: Efficient Document Retrieval with Vision Language Models](https://arxiv.org/abs/2407.01449) and first released in [this repository](https://github.com/ManuelFay/colpali)
19
 
20
+ <p align="center"><img width=800 src="https://github.com/illuin-tech/colpali/blob/main/assets/colpali_architecture.webp?raw=true"/></p>
21
 
22
+ ## Version specificity
23
 
 
24
 
25
+ This model takes dynamic image resolutions in input and does not resize them, changing their aspect ratio as in ColPali.
26
+ Maximal resolution is set so that 1024 image patches are created at most. Experiments show clear improvements with larger amounts of image patches, at the cost of memory requirements.
27
 
28
+ This version is trained with `colpali-engine==0.3.11`.
29
 
30
+ Data is the same as the ColPali data described in the paper.
31
 
32
 
33
+ ## Model Training
 
 
 
 
 
 
34
 
35
+ ### Dataset (Fully Image)
36
+ Our training dataset of 127,460 query-page pairs is comprised of train sets of openly available academic datasets (63%) and a synthetic dataset made up of pages from web-crawled PDF documents and augmented with VLM-generated (Claude-3 Sonnet) pseudo-questions (37%).
37
+ Our training set is fully English by design, enabling us to study zero-shot generalization to non-English languages. We explicitly verify no multi-page PDF document is used both [*ViDoRe*](https://huggingface.co/collections/vidore/vidore-benchmark-667173f98e70a1c0fa4db00d) and in the train set to prevent evaluation contamination.
38
+ A validation set is created with 2% of the samples to tune hyperparameters.
39
 
40
+ *Note: Multilingual data is present in the pretraining corpus of the language model and most probably in the multimodal training.*
41
 
42
+ ## Usage
 
 
43
 
44
+ Make sure `colpali-engine` is installed from source or with a version superior to 0.3.11.
45
 
46
+ ```bash
47
+ pip install git+https://github.com/illuin-tech/colpali
48
+ ```
49
 
50
+ ```python
51
 
52
+ import torch
53
+ from PIL import Image
54
+ from transformers.utils.import_utils import is_flash_attn_2_available
55
+ from tqdm import tqdm
56
+ from torch.utils.data import DataLoader
57
 
58
+ from colpali_engine.models import ColQwen2_5Omni, ColQwen2_5OmniProcessor
59
 
60
+ model = ColQwen2_5Omni.from_pretrained(
61
+ "vidore/colqwen-omni-v0.1",
62
+ torch_dtype=torch.bfloat16,
63
+ device_map="cuda", # or "mps" if on Apple Silicon
64
+ attn_implementation="flash_attention_2" # if is_flash_attn_2_available() else None,
65
+ ).eval()
66
+ processor = ColQwen2_5OmniProcessor.from_pretrained("vidore/colqwen-omni-v0.1")
67
 
68
+ dataset = load_dataset("eustlb/dailytalk-conversations-grouped", split="train[:500]")
69
+ audios = [x["array"] for x in dataset["audio"]]
70
 
 
71
 
72
+ dataloader = DataLoader(
73
+ dataset=audios,
74
+ batch_size=2,
75
+ shuffle=False,
76
+ collate_fn=lambda x: processor.process_audios(x),
77
+ )
78
 
79
+ ds = []
80
+ for batch_doc in tqdm(dataloader):
81
+ with torch.no_grad():
82
+ batch_doc = {k: v.to(model.device) for k, v in batch_doc.items()}
83
+ embeddings_doc = model(**batch_doc)
84
+ ds.extend(list(torch.unbind(embeddings_doc.to("cpu"))))
85
 
86
+ def get_results(query: str, k=10):
87
+ batch_queries = processor.process_queries([query]).to(model.device)
88
 
89
+ # Forward pass
90
+ with torch.no_grad():
91
+ query_embeddings = model(**batch_queries)
92
 
93
+ scores = processor.score_multi_vector(query_embeddings, ds)
94
+ # get top-5 scores
95
+ return scores[0].topk(k).indices.tolist()
96
 
97
+ res = get_results("C'est une chaine TV de quoi ?")
98
 
99
+ # In colab
100
+ display(Audio(dataset[res[0]]["audio"]["array"], autoplay=True, rate=dataset[res[0]]["audio"]["sampling_rate"]))
101
+ ```
102
 
103
+ ## Contact
104
 
105
+ - Manuel Faysse: manuel.faysse@illuin.tech
106
+ - Hugues Sibille: [email protected]
107
+ - Tony Wu: [email protected]
108
 
109
+ ## Citation
110
 
111
+ If you use any datasets or models from this organization in your research, please cite the original dataset as follows:
112
 
113
+ ```bibtex
114
+ @misc{faysse2024colpaliefficientdocumentretrieval,
115
+ title={ColPali: Efficient Document Retrieval with Vision Language Models},
116
+ author={Manuel Faysse and Hugues Sibille and Tony Wu and Bilel Omrani and Gautier Viaud and Céline Hudelot and Pierre Colombo},
117
+ year={2024},
118
+ eprint={2407.01449},
119
+ archivePrefix={arXiv},
120
+ primaryClass={cs.IR},
121
+ url={https://arxiv.org/abs/2407.01449},
122
+ }
123
+ ```