Update README.md
Browse files
README.md
CHANGED
|
@@ -1,202 +1,123 @@
|
|
| 1 |
---
|
| 2 |
base_model: vidore/colqwen2.5omni-base
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
---
|
| 5 |
|
| 6 |
-
#
|
| 7 |
|
| 8 |
-
|
|
|
|
|
|
|
| 9 |
|
|
|
|
| 10 |
|
|
|
|
| 11 |
|
| 12 |
-
## Model Details
|
| 13 |
|
| 14 |
-
|
|
|
|
| 15 |
|
| 16 |
-
|
| 17 |
|
|
|
|
| 18 |
|
| 19 |
|
| 20 |
-
|
| 21 |
-
- **Funded by [optional]:** [More Information Needed]
|
| 22 |
-
- **Shared by [optional]:** [More Information Needed]
|
| 23 |
-
- **Model type:** [More Information Needed]
|
| 24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
-
- **License:** [More Information Needed]
|
| 26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
|
| 28 |
-
###
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
-
|
| 31 |
|
| 32 |
-
|
| 33 |
-
- **Paper [optional]:** [More Information Needed]
|
| 34 |
-
- **Demo [optional]:** [More Information Needed]
|
| 35 |
|
| 36 |
-
|
| 37 |
|
| 38 |
-
|
|
|
|
|
|
|
| 39 |
|
| 40 |
-
|
| 41 |
|
| 42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
-
|
| 45 |
|
| 46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
-
|
|
|
|
| 49 |
|
| 50 |
-
[More Information Needed]
|
| 51 |
|
| 52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
-
|
|
|
|
| 57 |
|
| 58 |
-
|
|
|
|
|
|
|
| 59 |
|
| 60 |
-
|
|
|
|
|
|
|
| 61 |
|
| 62 |
-
|
| 63 |
|
| 64 |
-
|
|
|
|
|
|
|
| 65 |
|
| 66 |
-
|
| 67 |
|
| 68 |
-
|
|
|
|
|
|
|
| 69 |
|
| 70 |
-
##
|
| 71 |
|
| 72 |
-
|
| 73 |
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 87 |
-
|
| 88 |
-
#### Preprocessing [optional]
|
| 89 |
-
|
| 90 |
-
[More Information Needed]
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
#### Training Hyperparameters
|
| 94 |
-
|
| 95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 96 |
-
|
| 97 |
-
#### Speeds, Sizes, Times [optional]
|
| 98 |
-
|
| 99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
-
|
| 101 |
-
[More Information Needed]
|
| 102 |
-
|
| 103 |
-
## Evaluation
|
| 104 |
-
|
| 105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
-
|
| 107 |
-
### Testing Data, Factors & Metrics
|
| 108 |
-
|
| 109 |
-
#### Testing Data
|
| 110 |
-
|
| 111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
-
|
| 113 |
-
[More Information Needed]
|
| 114 |
-
|
| 115 |
-
#### Factors
|
| 116 |
-
|
| 117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
-
|
| 119 |
-
[More Information Needed]
|
| 120 |
-
|
| 121 |
-
#### Metrics
|
| 122 |
-
|
| 123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
-
|
| 125 |
-
[More Information Needed]
|
| 126 |
-
|
| 127 |
-
### Results
|
| 128 |
-
|
| 129 |
-
[More Information Needed]
|
| 130 |
-
|
| 131 |
-
#### Summary
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
## Model Examination [optional]
|
| 136 |
-
|
| 137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
-
|
| 139 |
-
[More Information Needed]
|
| 140 |
-
|
| 141 |
-
## Environmental Impact
|
| 142 |
-
|
| 143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
-
|
| 145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
-
|
| 147 |
-
- **Hardware Type:** [More Information Needed]
|
| 148 |
-
- **Hours used:** [More Information Needed]
|
| 149 |
-
- **Cloud Provider:** [More Information Needed]
|
| 150 |
-
- **Compute Region:** [More Information Needed]
|
| 151 |
-
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
-
|
| 153 |
-
## Technical Specifications [optional]
|
| 154 |
-
|
| 155 |
-
### Model Architecture and Objective
|
| 156 |
-
|
| 157 |
-
[More Information Needed]
|
| 158 |
-
|
| 159 |
-
### Compute Infrastructure
|
| 160 |
-
|
| 161 |
-
[More Information Needed]
|
| 162 |
-
|
| 163 |
-
#### Hardware
|
| 164 |
-
|
| 165 |
-
[More Information Needed]
|
| 166 |
-
|
| 167 |
-
#### Software
|
| 168 |
-
|
| 169 |
-
[More Information Needed]
|
| 170 |
-
|
| 171 |
-
## Citation [optional]
|
| 172 |
-
|
| 173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
-
|
| 175 |
-
**BibTeX:**
|
| 176 |
-
|
| 177 |
-
[More Information Needed]
|
| 178 |
-
|
| 179 |
-
**APA:**
|
| 180 |
-
|
| 181 |
-
[More Information Needed]
|
| 182 |
-
|
| 183 |
-
## Glossary [optional]
|
| 184 |
-
|
| 185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
-
|
| 187 |
-
[More Information Needed]
|
| 188 |
-
|
| 189 |
-
## More Information [optional]
|
| 190 |
-
|
| 191 |
-
[More Information Needed]
|
| 192 |
-
|
| 193 |
-
## Model Card Authors [optional]
|
| 194 |
-
|
| 195 |
-
[More Information Needed]
|
| 196 |
-
|
| 197 |
-
## Model Card Contact
|
| 198 |
-
|
| 199 |
-
[More Information Needed]
|
| 200 |
-
### Framework versions
|
| 201 |
-
|
| 202 |
-
- PEFT 0.15.2
|
|
|
|
| 1 |
---
|
| 2 |
base_model: vidore/colqwen2.5omni-base
|
| 3 |
+
license: mit
|
| 4 |
+
library_name: colpali
|
| 5 |
+
language:
|
| 6 |
+
- en
|
| 7 |
+
tags:
|
| 8 |
+
- colpali
|
| 9 |
+
- vidore
|
| 10 |
+
- vidore-experimental
|
| 11 |
+
pipeline_tag: visual-document-retrieval
|
| 12 |
---
|
| 13 |
|
| 14 |
+
# ColQwen2.5-Omni: Visual+Audio Retriever based on Qwen2.5-Omni-3B-Instruct with ColBERT strategy
|
| 15 |
|
| 16 |
+
ColQwen-Omni is a model based on a novel model architecture and training strategy based on Omnimodal Language Models to efficiently index documents from their visual features.
|
| 17 |
+
It is a Qwen2.5-Omni-3B extension that generates [ColBERT](https://arxiv.org/abs/2004.12832)- style multi-vector representations of text and images.
|
| 18 |
+
It was introduced in the paper [ColPali: Efficient Document Retrieval with Vision Language Models](https://arxiv.org/abs/2407.01449) and first released in [this repository](https://github.com/ManuelFay/colpali)
|
| 19 |
|
| 20 |
+
<p align="center"><img width=800 src="https://github.com/illuin-tech/colpali/blob/main/assets/colpali_architecture.webp?raw=true"/></p>
|
| 21 |
|
| 22 |
+
## Version specificity
|
| 23 |
|
|
|
|
| 24 |
|
| 25 |
+
This model takes dynamic image resolutions in input and does not resize them, changing their aspect ratio as in ColPali.
|
| 26 |
+
Maximal resolution is set so that 1024 image patches are created at most. Experiments show clear improvements with larger amounts of image patches, at the cost of memory requirements.
|
| 27 |
|
| 28 |
+
This version is trained with `colpali-engine==0.3.11`.
|
| 29 |
|
| 30 |
+
Data is the same as the ColPali data described in the paper.
|
| 31 |
|
| 32 |
|
| 33 |
+
## Model Training
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
+
### Dataset (Fully Image)
|
| 36 |
+
Our training dataset of 127,460 query-page pairs is comprised of train sets of openly available academic datasets (63%) and a synthetic dataset made up of pages from web-crawled PDF documents and augmented with VLM-generated (Claude-3 Sonnet) pseudo-questions (37%).
|
| 37 |
+
Our training set is fully English by design, enabling us to study zero-shot generalization to non-English languages. We explicitly verify no multi-page PDF document is used both [*ViDoRe*](https://huggingface.co/collections/vidore/vidore-benchmark-667173f98e70a1c0fa4db00d) and in the train set to prevent evaluation contamination.
|
| 38 |
+
A validation set is created with 2% of the samples to tune hyperparameters.
|
| 39 |
|
| 40 |
+
*Note: Multilingual data is present in the pretraining corpus of the language model and most probably in the multimodal training.*
|
| 41 |
|
| 42 |
+
## Usage
|
|
|
|
|
|
|
| 43 |
|
| 44 |
+
Make sure `colpali-engine` is installed from source or with a version superior to 0.3.11.
|
| 45 |
|
| 46 |
+
```bash
|
| 47 |
+
pip install git+https://github.com/illuin-tech/colpali
|
| 48 |
+
```
|
| 49 |
|
| 50 |
+
```python
|
| 51 |
|
| 52 |
+
import torch
|
| 53 |
+
from PIL import Image
|
| 54 |
+
from transformers.utils.import_utils import is_flash_attn_2_available
|
| 55 |
+
from tqdm import tqdm
|
| 56 |
+
from torch.utils.data import DataLoader
|
| 57 |
|
| 58 |
+
from colpali_engine.models import ColQwen2_5Omni, ColQwen2_5OmniProcessor
|
| 59 |
|
| 60 |
+
model = ColQwen2_5Omni.from_pretrained(
|
| 61 |
+
"vidore/colqwen-omni-v0.1",
|
| 62 |
+
torch_dtype=torch.bfloat16,
|
| 63 |
+
device_map="cuda", # or "mps" if on Apple Silicon
|
| 64 |
+
attn_implementation="flash_attention_2" # if is_flash_attn_2_available() else None,
|
| 65 |
+
).eval()
|
| 66 |
+
processor = ColQwen2_5OmniProcessor.from_pretrained("vidore/colqwen-omni-v0.1")
|
| 67 |
|
| 68 |
+
dataset = load_dataset("eustlb/dailytalk-conversations-grouped", split="train[:500]")
|
| 69 |
+
audios = [x["array"] for x in dataset["audio"]]
|
| 70 |
|
|
|
|
| 71 |
|
| 72 |
+
dataloader = DataLoader(
|
| 73 |
+
dataset=audios,
|
| 74 |
+
batch_size=2,
|
| 75 |
+
shuffle=False,
|
| 76 |
+
collate_fn=lambda x: processor.process_audios(x),
|
| 77 |
+
)
|
| 78 |
|
| 79 |
+
ds = []
|
| 80 |
+
for batch_doc in tqdm(dataloader):
|
| 81 |
+
with torch.no_grad():
|
| 82 |
+
batch_doc = {k: v.to(model.device) for k, v in batch_doc.items()}
|
| 83 |
+
embeddings_doc = model(**batch_doc)
|
| 84 |
+
ds.extend(list(torch.unbind(embeddings_doc.to("cpu"))))
|
| 85 |
|
| 86 |
+
def get_results(query: str, k=10):
|
| 87 |
+
batch_queries = processor.process_queries([query]).to(model.device)
|
| 88 |
|
| 89 |
+
# Forward pass
|
| 90 |
+
with torch.no_grad():
|
| 91 |
+
query_embeddings = model(**batch_queries)
|
| 92 |
|
| 93 |
+
scores = processor.score_multi_vector(query_embeddings, ds)
|
| 94 |
+
# get top-5 scores
|
| 95 |
+
return scores[0].topk(k).indices.tolist()
|
| 96 |
|
| 97 |
+
res = get_results("C'est une chaine TV de quoi ?")
|
| 98 |
|
| 99 |
+
# In colab
|
| 100 |
+
display(Audio(dataset[res[0]]["audio"]["array"], autoplay=True, rate=dataset[res[0]]["audio"]["sampling_rate"]))
|
| 101 |
+
```
|
| 102 |
|
| 103 |
+
## Contact
|
| 104 |
|
| 105 |
+
- Manuel Faysse: manuel.faysse@illuin.tech
|
| 106 |
+
- Hugues Sibille: [email protected]
|
| 107 |
+
- Tony Wu: [email protected]
|
| 108 |
|
| 109 |
+
## Citation
|
| 110 |
|
| 111 |
+
If you use any datasets or models from this organization in your research, please cite the original dataset as follows:
|
| 112 |
|
| 113 |
+
```bibtex
|
| 114 |
+
@misc{faysse2024colpaliefficientdocumentretrieval,
|
| 115 |
+
title={ColPali: Efficient Document Retrieval with Vision Language Models},
|
| 116 |
+
author={Manuel Faysse and Hugues Sibille and Tony Wu and Bilel Omrani and Gautier Viaud and Céline Hudelot and Pierre Colombo},
|
| 117 |
+
year={2024},
|
| 118 |
+
eprint={2407.01449},
|
| 119 |
+
archivePrefix={arXiv},
|
| 120 |
+
primaryClass={cs.IR},
|
| 121 |
+
url={https://arxiv.org/abs/2407.01449},
|
| 122 |
+
}
|
| 123 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|