463465810cz
commited on
Commit
·
bd633b6
1
Parent(s):
d0a0da7
DAT
Browse files- .gitignore +2 -0
- README.md +56 -0
- VERSION +1 -0
- basicsr/__init__.py +6 -0
- basicsr/archs/__init__.py +25 -0
- basicsr/archs/arch_util.py +318 -0
- basicsr/archs/dat_arch.py +846 -0
- basicsr/data/__init__.py +101 -0
- basicsr/data/data_sampler.py +48 -0
- basicsr/data/data_util.py +283 -0
- basicsr/data/paired_image_dataset.py +135 -0
- basicsr/data/prefetch_dataloader.py +125 -0
- basicsr/data/transforms.py +179 -0
- basicsr/losses/__init__.py +26 -0
- basicsr/losses/loss_util.py +95 -0
- basicsr/losses/losses.py +492 -0
- basicsr/metrics/__init__.py +19 -0
- basicsr/metrics/metric_util.py +45 -0
- basicsr/metrics/psnr_ssim.py +128 -0
- basicsr/models/__init__.py +30 -0
- basicsr/models/base_model.py +380 -0
- basicsr/models/lr_scheduler.py +96 -0
- basicsr/models/sr_model.py +231 -0
- basicsr/test.py +44 -0
- basicsr/utils/__init__.py +30 -0
- basicsr/utils/dist_util.py +82 -0
- basicsr/utils/file_client.py +167 -0
- basicsr/utils/img_util.py +172 -0
- basicsr/utils/logger.py +213 -0
- basicsr/utils/matlab_functions.py +359 -0
- basicsr/utils/misc.py +141 -0
- basicsr/utils/options.py +194 -0
- basicsr/utils/registry.py +82 -0
- basicsr/version.py +5 -0
- datasets/README.md +2 -0
- experiments/README.md +2 -0
- experiments/pretrained_models/README.md +1 -0
- options/README.md +2 -0
- options/Test/test_DAT_2_x2.yml +93 -0
- options/Test/test_DAT_2_x3.yml +92 -0
- options/Test/test_DAT_2_x4.yml +93 -0
- options/Test/test_DAT_L_x2.yml +93 -0
- options/Test/test_DAT_L_x3.yml +92 -0
- options/Test/test_DAT_L_x4.yml +93 -0
- options/Test/test_DAT_x2.yml +93 -0
- options/Test/test_DAT_x3.yml +92 -0
- options/Test/test_DAT_x4.yml +93 -0
- requirements.txt +18 -0
- results/README.md +1 -0
- setup.py +166 -0
.gitignore
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
.DS_Store
|
README.md
CHANGED
|
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Dual Aggregation Transformer for Image Super-Resolution
|
| 2 |
+
|
| 3 |
+
This repository is for DAT introduced in the paper.
|
| 4 |
+
|
| 5 |
+
## Dependencies
|
| 6 |
+
|
| 7 |
+
- Python 3.8
|
| 8 |
+
- pytorch >= 1.8.0
|
| 9 |
+
- NVIDIA GPU + [CUDA](https://developer.nvidia.com/cuda-downloads)
|
| 10 |
+
|
| 11 |
+
```bash
|
| 12 |
+
# Cd to the default directory 'DAT'
|
| 13 |
+
pip install -r requirements.txt
|
| 14 |
+
python setup.py develop
|
| 15 |
+
```
|
| 16 |
+
|
| 17 |
+
## TODO
|
| 18 |
+
|
| 19 |
+
* [x] Classic Image SR
|
| 20 |
+
* [ ] More Image SR: Lightweight Image SR, Blind Image SR, Real-World Image SR, ...
|
| 21 |
+
|
| 22 |
+
## Test
|
| 23 |
+
|
| 24 |
+
- Download the pre-trained [models](https://ufile.io/4u0ms0h5) and place them in `experiments/pretrained_models/`.
|
| 25 |
+
|
| 26 |
+
We provide all models: DAT, DAT-L, and DAT-2 (x2, x3, x4).
|
| 27 |
+
|
| 28 |
+
- Download [testing](https://ufile.io/6ek67nf8) (Set5, Set14, BSD100, Urban100, Manga109) datasets, place them in `datasets/`.
|
| 29 |
+
|
| 30 |
+
- Run the folloing scripts. The testing configuration is in `options/Test/`. More detail about YML, please refer to [Configuration](https://github.com/XPixelGroup/BasicSR/blob/master/docs/Config.md).
|
| 31 |
+
|
| 32 |
+
**You can change the testing configuration in YML file, like 'test_DAT_x2.yml'.**
|
| 33 |
+
|
| 34 |
+
```shell
|
| 35 |
+
# No self-ensemble
|
| 36 |
+
# DAT, reproduces results in Table 2 of the main paper
|
| 37 |
+
python basicsr/test.py -opt options/Test/test_DAT_x2.yml
|
| 38 |
+
python basicsr/test.py -opt options/Test/test_DAT_x3.yml
|
| 39 |
+
python basicsr/test.py -opt options/Test/test_DAT_x3.yml
|
| 40 |
+
|
| 41 |
+
# DAT-L, reproduces results in Table 2 of the main paper
|
| 42 |
+
python basicsr/test.py -opt options/Test/test_DAT_L_x2.yml
|
| 43 |
+
python basicsr/test.py -opt options/Test/test_DAT_L_x3.yml
|
| 44 |
+
python basicsr/test.py -opt options/Test/test_DAT_L_x3.yml
|
| 45 |
+
|
| 46 |
+
# DAT-L, reproduces results in Table 1 of the supplementary material
|
| 47 |
+
python basicsr/test.py -opt options/Test/test_DAT_2_x2.yml
|
| 48 |
+
python basicsr/test.py -opt options/Test/test_DAT_2_x3.yml
|
| 49 |
+
python basicsr/test.py -opt options/Test/test_DAT_2_x3.yml
|
| 50 |
+
```
|
| 51 |
+
|
| 52 |
+
- The output is in `results`.
|
| 53 |
+
|
| 54 |
+
## Acknowledgements
|
| 55 |
+
|
| 56 |
+
This code is built on [BasicSR](https://github.com/XPixelGroup/BasicSR).
|
VERSION
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
1.3.5
|
basicsr/__init__.py
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .archs import *
|
| 2 |
+
from .data import *
|
| 3 |
+
from .metrics import *
|
| 4 |
+
from .models import *
|
| 5 |
+
from .test import *
|
| 6 |
+
from .utils import *
|
basicsr/archs/__init__.py
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import importlib
|
| 2 |
+
from copy import deepcopy
|
| 3 |
+
from os import path as osp
|
| 4 |
+
|
| 5 |
+
from basicsr.utils import get_root_logger, scandir
|
| 6 |
+
from basicsr.utils.registry import ARCH_REGISTRY
|
| 7 |
+
|
| 8 |
+
__all__ = ['build_network']
|
| 9 |
+
|
| 10 |
+
# automatically scan and import arch modules for registry
|
| 11 |
+
# scan all the files under the 'archs' folder and collect files ending with
|
| 12 |
+
# '_arch.py'
|
| 13 |
+
arch_folder = osp.dirname(osp.abspath(__file__))
|
| 14 |
+
arch_filenames = [osp.splitext(osp.basename(v))[0] for v in scandir(arch_folder) if v.endswith('_arch.py')]
|
| 15 |
+
# import all the arch modules
|
| 16 |
+
_arch_modules = [importlib.import_module(f'basicsr.archs.{file_name}') for file_name in arch_filenames]
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def build_network(opt):
|
| 20 |
+
opt = deepcopy(opt)
|
| 21 |
+
network_type = opt.pop('type')
|
| 22 |
+
net = ARCH_REGISTRY.get(network_type)(**opt)
|
| 23 |
+
logger = get_root_logger()
|
| 24 |
+
logger.info(f'Network [{net.__class__.__name__}] is created.')
|
| 25 |
+
return net
|
basicsr/archs/arch_util.py
ADDED
|
@@ -0,0 +1,318 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import collections.abc
|
| 2 |
+
import math
|
| 3 |
+
import torch
|
| 4 |
+
import torchvision
|
| 5 |
+
import warnings
|
| 6 |
+
from distutils.version import LooseVersion
|
| 7 |
+
from itertools import repeat
|
| 8 |
+
from torch import nn as nn
|
| 9 |
+
from torch.nn import functional as F
|
| 10 |
+
from torch.nn import init as init
|
| 11 |
+
from torch.nn.modules.batchnorm import _BatchNorm
|
| 12 |
+
|
| 13 |
+
# from basicsr.ops.dcn import ModulatedDeformConvPack, modulated_deform_conv
|
| 14 |
+
from basicsr.utils import get_root_logger
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
@torch.no_grad()
|
| 18 |
+
def default_init_weights(module_list, scale=1, bias_fill=0, **kwargs):
|
| 19 |
+
"""Initialize network weights.
|
| 20 |
+
|
| 21 |
+
Args:
|
| 22 |
+
module_list (list[nn.Module] | nn.Module): Modules to be initialized.
|
| 23 |
+
scale (float): Scale initialized weights, especially for residual
|
| 24 |
+
blocks. Default: 1.
|
| 25 |
+
bias_fill (float): The value to fill bias. Default: 0
|
| 26 |
+
kwargs (dict): Other arguments for initialization function.
|
| 27 |
+
"""
|
| 28 |
+
if not isinstance(module_list, list):
|
| 29 |
+
module_list = [module_list]
|
| 30 |
+
for module in module_list:
|
| 31 |
+
for m in module.modules():
|
| 32 |
+
if isinstance(m, nn.Conv2d):
|
| 33 |
+
init.kaiming_normal_(m.weight, **kwargs)
|
| 34 |
+
m.weight.data *= scale
|
| 35 |
+
if m.bias is not None:
|
| 36 |
+
m.bias.data.fill_(bias_fill)
|
| 37 |
+
elif isinstance(m, nn.Linear):
|
| 38 |
+
init.kaiming_normal_(m.weight, **kwargs)
|
| 39 |
+
m.weight.data *= scale
|
| 40 |
+
if m.bias is not None:
|
| 41 |
+
m.bias.data.fill_(bias_fill)
|
| 42 |
+
elif isinstance(m, _BatchNorm):
|
| 43 |
+
init.constant_(m.weight, 1)
|
| 44 |
+
if m.bias is not None:
|
| 45 |
+
m.bias.data.fill_(bias_fill)
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def make_layer(basic_block, num_basic_block, **kwarg):
|
| 49 |
+
"""Make layers by stacking the same blocks.
|
| 50 |
+
|
| 51 |
+
Args:
|
| 52 |
+
basic_block (nn.module): nn.module class for basic block.
|
| 53 |
+
num_basic_block (int): number of blocks.
|
| 54 |
+
|
| 55 |
+
Returns:
|
| 56 |
+
nn.Sequential: Stacked blocks in nn.Sequential.
|
| 57 |
+
"""
|
| 58 |
+
layers = []
|
| 59 |
+
for _ in range(num_basic_block):
|
| 60 |
+
layers.append(basic_block(**kwarg))
|
| 61 |
+
return nn.Sequential(*layers)
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
class ResidualBlockNoBN(nn.Module):
|
| 65 |
+
"""Residual block without BN.
|
| 66 |
+
|
| 67 |
+
It has a style of:
|
| 68 |
+
---Conv-ReLU-Conv-+-
|
| 69 |
+
|________________|
|
| 70 |
+
|
| 71 |
+
Args:
|
| 72 |
+
num_feat (int): Channel number of intermediate features.
|
| 73 |
+
Default: 64.
|
| 74 |
+
res_scale (float): Residual scale. Default: 1.
|
| 75 |
+
pytorch_init (bool): If set to True, use pytorch default init,
|
| 76 |
+
otherwise, use default_init_weights. Default: False.
|
| 77 |
+
"""
|
| 78 |
+
|
| 79 |
+
def __init__(self, num_feat=64, res_scale=1, pytorch_init=False):
|
| 80 |
+
super(ResidualBlockNoBN, self).__init__()
|
| 81 |
+
self.res_scale = res_scale
|
| 82 |
+
self.conv1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=True)
|
| 83 |
+
self.conv2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=True)
|
| 84 |
+
self.relu = nn.ReLU(inplace=True)
|
| 85 |
+
|
| 86 |
+
if not pytorch_init:
|
| 87 |
+
default_init_weights([self.conv1, self.conv2], 0.1)
|
| 88 |
+
|
| 89 |
+
def forward(self, x):
|
| 90 |
+
identity = x
|
| 91 |
+
out = self.conv2(self.relu(self.conv1(x)))
|
| 92 |
+
return identity + out * self.res_scale
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
class Upsample(nn.Sequential):
|
| 96 |
+
"""Upsample module.
|
| 97 |
+
|
| 98 |
+
Args:
|
| 99 |
+
scale (int): Scale factor. Supported scales: 2^n and 3.
|
| 100 |
+
num_feat (int): Channel number of intermediate features.
|
| 101 |
+
"""
|
| 102 |
+
|
| 103 |
+
def __init__(self, scale, num_feat):
|
| 104 |
+
m = []
|
| 105 |
+
if (scale & (scale - 1)) == 0: # scale = 2^n
|
| 106 |
+
for _ in range(int(math.log(scale, 2))):
|
| 107 |
+
m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
|
| 108 |
+
m.append(nn.PixelShuffle(2))
|
| 109 |
+
elif scale == 3:
|
| 110 |
+
m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
|
| 111 |
+
m.append(nn.PixelShuffle(3))
|
| 112 |
+
else:
|
| 113 |
+
raise ValueError(f'scale {scale} is not supported. Supported scales: 2^n and 3.')
|
| 114 |
+
super(Upsample, self).__init__(*m)
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
def flow_warp(x, flow, interp_mode='bilinear', padding_mode='zeros', align_corners=True):
|
| 118 |
+
"""Warp an image or feature map with optical flow.
|
| 119 |
+
|
| 120 |
+
Args:
|
| 121 |
+
x (Tensor): Tensor with size (n, c, h, w).
|
| 122 |
+
flow (Tensor): Tensor with size (n, h, w, 2), normal value.
|
| 123 |
+
interp_mode (str): 'nearest' or 'bilinear'. Default: 'bilinear'.
|
| 124 |
+
padding_mode (str): 'zeros' or 'border' or 'reflection'.
|
| 125 |
+
Default: 'zeros'.
|
| 126 |
+
align_corners (bool): Before pytorch 1.3, the default value is
|
| 127 |
+
align_corners=True. After pytorch 1.3, the default value is
|
| 128 |
+
align_corners=False. Here, we use the True as default.
|
| 129 |
+
|
| 130 |
+
Returns:
|
| 131 |
+
Tensor: Warped image or feature map.
|
| 132 |
+
"""
|
| 133 |
+
assert x.size()[-2:] == flow.size()[1:3]
|
| 134 |
+
_, _, h, w = x.size()
|
| 135 |
+
# create mesh grid
|
| 136 |
+
grid_y, grid_x = torch.meshgrid(torch.arange(0, h).type_as(x), torch.arange(0, w).type_as(x))
|
| 137 |
+
grid = torch.stack((grid_x, grid_y), 2).float() # W(x), H(y), 2
|
| 138 |
+
grid.requires_grad = False
|
| 139 |
+
|
| 140 |
+
vgrid = grid + flow
|
| 141 |
+
# scale grid to [-1,1]
|
| 142 |
+
vgrid_x = 2.0 * vgrid[:, :, :, 0] / max(w - 1, 1) - 1.0
|
| 143 |
+
vgrid_y = 2.0 * vgrid[:, :, :, 1] / max(h - 1, 1) - 1.0
|
| 144 |
+
vgrid_scaled = torch.stack((vgrid_x, vgrid_y), dim=3)
|
| 145 |
+
output = F.grid_sample(x, vgrid_scaled, mode=interp_mode, padding_mode=padding_mode, align_corners=align_corners)
|
| 146 |
+
|
| 147 |
+
# TODO, what if align_corners=False
|
| 148 |
+
return output
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
def resize_flow(flow, size_type, sizes, interp_mode='bilinear', align_corners=False):
|
| 152 |
+
"""Resize a flow according to ratio or shape.
|
| 153 |
+
|
| 154 |
+
Args:
|
| 155 |
+
flow (Tensor): Precomputed flow. shape [N, 2, H, W].
|
| 156 |
+
size_type (str): 'ratio' or 'shape'.
|
| 157 |
+
sizes (list[int | float]): the ratio for resizing or the final output
|
| 158 |
+
shape.
|
| 159 |
+
1) The order of ratio should be [ratio_h, ratio_w]. For
|
| 160 |
+
downsampling, the ratio should be smaller than 1.0 (i.e., ratio
|
| 161 |
+
< 1.0). For upsampling, the ratio should be larger than 1.0 (i.e.,
|
| 162 |
+
ratio > 1.0).
|
| 163 |
+
2) The order of output_size should be [out_h, out_w].
|
| 164 |
+
interp_mode (str): The mode of interpolation for resizing.
|
| 165 |
+
Default: 'bilinear'.
|
| 166 |
+
align_corners (bool): Whether align corners. Default: False.
|
| 167 |
+
|
| 168 |
+
Returns:
|
| 169 |
+
Tensor: Resized flow.
|
| 170 |
+
"""
|
| 171 |
+
_, _, flow_h, flow_w = flow.size()
|
| 172 |
+
if size_type == 'ratio':
|
| 173 |
+
output_h, output_w = int(flow_h * sizes[0]), int(flow_w * sizes[1])
|
| 174 |
+
elif size_type == 'shape':
|
| 175 |
+
output_h, output_w = sizes[0], sizes[1]
|
| 176 |
+
else:
|
| 177 |
+
raise ValueError(f'Size type should be ratio or shape, but got type {size_type}.')
|
| 178 |
+
|
| 179 |
+
input_flow = flow.clone()
|
| 180 |
+
ratio_h = output_h / flow_h
|
| 181 |
+
ratio_w = output_w / flow_w
|
| 182 |
+
input_flow[:, 0, :, :] *= ratio_w
|
| 183 |
+
input_flow[:, 1, :, :] *= ratio_h
|
| 184 |
+
resized_flow = F.interpolate(
|
| 185 |
+
input=input_flow, size=(output_h, output_w), mode=interp_mode, align_corners=align_corners)
|
| 186 |
+
return resized_flow
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
# TODO: may write a cpp file
|
| 190 |
+
def pixel_unshuffle(x, scale):
|
| 191 |
+
""" Pixel unshuffle.
|
| 192 |
+
|
| 193 |
+
Args:
|
| 194 |
+
x (Tensor): Input feature with shape (b, c, hh, hw).
|
| 195 |
+
scale (int): Downsample ratio.
|
| 196 |
+
|
| 197 |
+
Returns:
|
| 198 |
+
Tensor: the pixel unshuffled feature.
|
| 199 |
+
"""
|
| 200 |
+
b, c, hh, hw = x.size()
|
| 201 |
+
out_channel = c * (scale**2)
|
| 202 |
+
assert hh % scale == 0 and hw % scale == 0
|
| 203 |
+
h = hh // scale
|
| 204 |
+
w = hw // scale
|
| 205 |
+
x_view = x.view(b, c, h, scale, w, scale)
|
| 206 |
+
return x_view.permute(0, 1, 3, 5, 2, 4).reshape(b, out_channel, h, w)
|
| 207 |
+
|
| 208 |
+
|
| 209 |
+
# class DCNv2Pack(ModulatedDeformConvPack):
|
| 210 |
+
# """Modulated deformable conv for deformable alignment.
|
| 211 |
+
#
|
| 212 |
+
# Different from the official DCNv2Pack, which generates offsets and masks
|
| 213 |
+
# from the preceding features, this DCNv2Pack takes another different
|
| 214 |
+
# features to generate offsets and masks.
|
| 215 |
+
#
|
| 216 |
+
# Ref:
|
| 217 |
+
# Delving Deep into Deformable Alignment in Video Super-Resolution.
|
| 218 |
+
# """
|
| 219 |
+
#
|
| 220 |
+
# def forward(self, x, feat):
|
| 221 |
+
# out = self.conv_offset(feat)
|
| 222 |
+
# o1, o2, mask = torch.chunk(out, 3, dim=1)
|
| 223 |
+
# offset = torch.cat((o1, o2), dim=1)
|
| 224 |
+
# mask = torch.sigmoid(mask)
|
| 225 |
+
#
|
| 226 |
+
# offset_absmean = torch.mean(torch.abs(offset))
|
| 227 |
+
# if offset_absmean > 50:
|
| 228 |
+
# logger = get_root_logger()
|
| 229 |
+
# logger.warning(f'Offset abs mean is {offset_absmean}, larger than 50.')
|
| 230 |
+
#
|
| 231 |
+
# if LooseVersion(torchvision.__version__) >= LooseVersion('0.9.0'):
|
| 232 |
+
# return torchvision.ops.deform_conv2d(x, offset, self.weight, self.bias, self.stride, self.padding,
|
| 233 |
+
# self.dilation, mask)
|
| 234 |
+
# else:
|
| 235 |
+
# return modulated_deform_conv(x, offset, mask, self.weight, self.bias, self.stride, self.padding,
|
| 236 |
+
# self.dilation, self.groups, self.deformable_groups)
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
def _no_grad_trunc_normal_(tensor, mean, std, a, b):
|
| 240 |
+
# From: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/weight_init.py
|
| 241 |
+
# Cut & paste from PyTorch official master until it's in a few official releases - RW
|
| 242 |
+
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
|
| 243 |
+
def norm_cdf(x):
|
| 244 |
+
# Computes standard normal cumulative distribution function
|
| 245 |
+
return (1. + math.erf(x / math.sqrt(2.))) / 2.
|
| 246 |
+
|
| 247 |
+
if (mean < a - 2 * std) or (mean > b + 2 * std):
|
| 248 |
+
warnings.warn(
|
| 249 |
+
'mean is more than 2 std from [a, b] in nn.init.trunc_normal_. '
|
| 250 |
+
'The distribution of values may be incorrect.',
|
| 251 |
+
stacklevel=2)
|
| 252 |
+
|
| 253 |
+
with torch.no_grad():
|
| 254 |
+
# Values are generated by using a truncated uniform distribution and
|
| 255 |
+
# then using the inverse CDF for the normal distribution.
|
| 256 |
+
# Get upper and lower cdf values
|
| 257 |
+
low = norm_cdf((a - mean) / std)
|
| 258 |
+
up = norm_cdf((b - mean) / std)
|
| 259 |
+
|
| 260 |
+
# Uniformly fill tensor with values from [low, up], then translate to
|
| 261 |
+
# [2l-1, 2u-1].
|
| 262 |
+
tensor.uniform_(2 * low - 1, 2 * up - 1)
|
| 263 |
+
|
| 264 |
+
# Use inverse cdf transform for normal distribution to get truncated
|
| 265 |
+
# standard normal
|
| 266 |
+
tensor.erfinv_()
|
| 267 |
+
|
| 268 |
+
# Transform to proper mean, std
|
| 269 |
+
tensor.mul_(std * math.sqrt(2.))
|
| 270 |
+
tensor.add_(mean)
|
| 271 |
+
|
| 272 |
+
# Clamp to ensure it's in the proper range
|
| 273 |
+
tensor.clamp_(min=a, max=b)
|
| 274 |
+
return tensor
|
| 275 |
+
|
| 276 |
+
|
| 277 |
+
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
|
| 278 |
+
r"""Fills the input Tensor with values drawn from a truncated
|
| 279 |
+
normal distribution.
|
| 280 |
+
|
| 281 |
+
From: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/weight_init.py
|
| 282 |
+
|
| 283 |
+
The values are effectively drawn from the
|
| 284 |
+
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
|
| 285 |
+
with values outside :math:`[a, b]` redrawn until they are within
|
| 286 |
+
the bounds. The method used for generating the random values works
|
| 287 |
+
best when :math:`a \leq \text{mean} \leq b`.
|
| 288 |
+
|
| 289 |
+
Args:
|
| 290 |
+
tensor: an n-dimensional `torch.Tensor`
|
| 291 |
+
mean: the mean of the normal distribution
|
| 292 |
+
std: the standard deviation of the normal distribution
|
| 293 |
+
a: the minimum cutoff value
|
| 294 |
+
b: the maximum cutoff value
|
| 295 |
+
|
| 296 |
+
Examples:
|
| 297 |
+
>>> w = torch.empty(3, 5)
|
| 298 |
+
>>> nn.init.trunc_normal_(w)
|
| 299 |
+
"""
|
| 300 |
+
return _no_grad_trunc_normal_(tensor, mean, std, a, b)
|
| 301 |
+
|
| 302 |
+
|
| 303 |
+
# From PyTorch
|
| 304 |
+
def _ntuple(n):
|
| 305 |
+
|
| 306 |
+
def parse(x):
|
| 307 |
+
if isinstance(x, collections.abc.Iterable):
|
| 308 |
+
return x
|
| 309 |
+
return tuple(repeat(x, n))
|
| 310 |
+
|
| 311 |
+
return parse
|
| 312 |
+
|
| 313 |
+
|
| 314 |
+
to_1tuple = _ntuple(1)
|
| 315 |
+
to_2tuple = _ntuple(2)
|
| 316 |
+
to_3tuple = _ntuple(3)
|
| 317 |
+
to_4tuple = _ntuple(4)
|
| 318 |
+
to_ntuple = _ntuple
|
basicsr/archs/dat_arch.py
ADDED
|
@@ -0,0 +1,846 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.utils.checkpoint as checkpoint
|
| 4 |
+
from torch import Tensor
|
| 5 |
+
from torch.nn import functional as F
|
| 6 |
+
|
| 7 |
+
from timm.models.layers import DropPath, trunc_normal_
|
| 8 |
+
from einops.layers.torch import Rearrange
|
| 9 |
+
from einops import rearrange
|
| 10 |
+
|
| 11 |
+
import math
|
| 12 |
+
import numpy as np
|
| 13 |
+
|
| 14 |
+
from basicsr.utils.registry import ARCH_REGISTRY
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def img2windows(img, H_sp, W_sp):
|
| 18 |
+
"""
|
| 19 |
+
Input: Image (B, C, H, W)
|
| 20 |
+
Output: Window Partition (B', N, C)
|
| 21 |
+
"""
|
| 22 |
+
B, C, H, W = img.shape
|
| 23 |
+
img_reshape = img.view(B, C, H // H_sp, H_sp, W // W_sp, W_sp)
|
| 24 |
+
img_perm = img_reshape.permute(0, 2, 4, 3, 5, 1).contiguous().reshape(-1, H_sp* W_sp, C)
|
| 25 |
+
return img_perm
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def windows2img(img_splits_hw, H_sp, W_sp, H, W):
|
| 29 |
+
"""
|
| 30 |
+
Input: Window Partition (B', N, C)
|
| 31 |
+
Output: Image (B, H, W, C)
|
| 32 |
+
"""
|
| 33 |
+
B = int(img_splits_hw.shape[0] / (H * W / H_sp / W_sp))
|
| 34 |
+
|
| 35 |
+
img = img_splits_hw.view(B, H // H_sp, W // W_sp, H_sp, W_sp, -1)
|
| 36 |
+
img = img.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
| 37 |
+
return img
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
class SpatialGate(nn.Module):
|
| 41 |
+
""" Spatial-Gate.
|
| 42 |
+
Args:
|
| 43 |
+
dim (int): Half of input channels.
|
| 44 |
+
"""
|
| 45 |
+
def __init__(self, dim):
|
| 46 |
+
super().__init__()
|
| 47 |
+
self.norm = nn.LayerNorm(dim)
|
| 48 |
+
self.conv = nn.Conv2d(dim, dim, kernel_size=3, stride=1, padding=1, groups=dim) # DW Conv
|
| 49 |
+
|
| 50 |
+
def forward(self, x, H, W):
|
| 51 |
+
# Split
|
| 52 |
+
x1, x2 = x.chunk(2, dim = -1)
|
| 53 |
+
B, N, C = x.shape
|
| 54 |
+
x2 = self.conv(self.norm(x2).transpose(1, 2).contiguous().view(B, C//2, H, W)).flatten(2).transpose(-1, -2).contiguous()
|
| 55 |
+
|
| 56 |
+
return x1 * x2
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
class SGFN(nn.Module):
|
| 60 |
+
""" Spatial-Gate Feed-Forward Network.
|
| 61 |
+
Args:
|
| 62 |
+
in_features (int): Number of input channels.
|
| 63 |
+
hidden_features (int | None): Number of hidden channels. Default: None
|
| 64 |
+
out_features (int | None): Number of output channels. Default: None
|
| 65 |
+
act_layer (nn.Module): Activation layer. Default: nn.GELU
|
| 66 |
+
drop (float): Dropout rate. Default: 0.0
|
| 67 |
+
"""
|
| 68 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
| 69 |
+
super().__init__()
|
| 70 |
+
out_features = out_features or in_features
|
| 71 |
+
hidden_features = hidden_features or in_features
|
| 72 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
| 73 |
+
self.act = act_layer()
|
| 74 |
+
self.sg = SpatialGate(hidden_features//2)
|
| 75 |
+
self.fc2 = nn.Linear(hidden_features//2, out_features)
|
| 76 |
+
self.drop = nn.Dropout(drop)
|
| 77 |
+
|
| 78 |
+
def forward(self, x, H, W):
|
| 79 |
+
"""
|
| 80 |
+
Input: x: (B, H*W, C), H, W
|
| 81 |
+
Output: x: (B, H*W, C)
|
| 82 |
+
"""
|
| 83 |
+
x = self.fc1(x)
|
| 84 |
+
x = self.act(x)
|
| 85 |
+
x = self.drop(x)
|
| 86 |
+
|
| 87 |
+
x = self.sg(x, H, W)
|
| 88 |
+
x = self.drop(x)
|
| 89 |
+
|
| 90 |
+
x = self.fc2(x)
|
| 91 |
+
x = self.drop(x)
|
| 92 |
+
return x
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
class DynamicPosBias(nn.Module):
|
| 96 |
+
# The implementation builds on Crossformer code https://github.com/cheerss/CrossFormer/blob/main/models/crossformer.py
|
| 97 |
+
""" Dynamic Relative Position Bias.
|
| 98 |
+
Args:
|
| 99 |
+
dim (int): Number of input channels.
|
| 100 |
+
num_heads (int): Number of attention heads.
|
| 101 |
+
residual (bool): If True, use residual strage to connect conv.
|
| 102 |
+
"""
|
| 103 |
+
def __init__(self, dim, num_heads, residual):
|
| 104 |
+
super().__init__()
|
| 105 |
+
self.residual = residual
|
| 106 |
+
self.num_heads = num_heads
|
| 107 |
+
self.pos_dim = dim // 4
|
| 108 |
+
self.pos_proj = nn.Linear(2, self.pos_dim)
|
| 109 |
+
self.pos1 = nn.Sequential(
|
| 110 |
+
nn.LayerNorm(self.pos_dim),
|
| 111 |
+
nn.ReLU(inplace=True),
|
| 112 |
+
nn.Linear(self.pos_dim, self.pos_dim),
|
| 113 |
+
)
|
| 114 |
+
self.pos2 = nn.Sequential(
|
| 115 |
+
nn.LayerNorm(self.pos_dim),
|
| 116 |
+
nn.ReLU(inplace=True),
|
| 117 |
+
nn.Linear(self.pos_dim, self.pos_dim)
|
| 118 |
+
)
|
| 119 |
+
self.pos3 = nn.Sequential(
|
| 120 |
+
nn.LayerNorm(self.pos_dim),
|
| 121 |
+
nn.ReLU(inplace=True),
|
| 122 |
+
nn.Linear(self.pos_dim, self.num_heads)
|
| 123 |
+
)
|
| 124 |
+
def forward(self, biases):
|
| 125 |
+
if self.residual:
|
| 126 |
+
pos = self.pos_proj(biases) # 2Gh-1 * 2Gw-1, heads
|
| 127 |
+
pos = pos + self.pos1(pos)
|
| 128 |
+
pos = pos + self.pos2(pos)
|
| 129 |
+
pos = self.pos3(pos)
|
| 130 |
+
else:
|
| 131 |
+
pos = self.pos3(self.pos2(self.pos1(self.pos_proj(biases))))
|
| 132 |
+
return pos
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
class Spatial_Attention(nn.Module):
|
| 136 |
+
""" Spatial Window Self-Attention.
|
| 137 |
+
It supports rectangle window (containing square window).
|
| 138 |
+
Args:
|
| 139 |
+
dim (int): Number of input channels.
|
| 140 |
+
idx (int): The indentix of different shape window.
|
| 141 |
+
split_size (tuple(int)): Height or Width of spatial window.
|
| 142 |
+
dim_out (int | None): The dimension of the attention output. Default: None
|
| 143 |
+
num_heads (int): Number of attention heads. Default: 6
|
| 144 |
+
attn_drop (float): Dropout ratio of attention weight. Default: 0.0
|
| 145 |
+
proj_drop (float): Dropout ratio of output. Default: 0.0
|
| 146 |
+
qk_scale (float | None): Override default qk scale of head_dim ** -0.5 if set
|
| 147 |
+
position_bias (bool): The dynamic relative position bias. Default: True
|
| 148 |
+
"""
|
| 149 |
+
def __init__(self, dim, idx, split_size=[8,8], dim_out=None, num_heads=6, attn_drop=0., proj_drop=0., qk_scale=None, position_bias=True):
|
| 150 |
+
super().__init__()
|
| 151 |
+
self.dim = dim
|
| 152 |
+
self.dim_out = dim_out or dim
|
| 153 |
+
self.split_size = split_size
|
| 154 |
+
self.num_heads = num_heads
|
| 155 |
+
self.idx = idx
|
| 156 |
+
self.position_bias = position_bias
|
| 157 |
+
|
| 158 |
+
head_dim = dim // num_heads
|
| 159 |
+
self.scale = qk_scale or head_dim ** -0.5
|
| 160 |
+
|
| 161 |
+
if idx == 0:
|
| 162 |
+
H_sp, W_sp = self.split_size[0], self.split_size[1]
|
| 163 |
+
elif idx == 1:
|
| 164 |
+
W_sp, H_sp = self.split_size[0], self.split_size[1]
|
| 165 |
+
else:
|
| 166 |
+
print ("ERROR MODE", idx)
|
| 167 |
+
exit(0)
|
| 168 |
+
self.H_sp = H_sp
|
| 169 |
+
self.W_sp = W_sp
|
| 170 |
+
|
| 171 |
+
if self.position_bias:
|
| 172 |
+
self.pos = DynamicPosBias(self.dim // 4, self.num_heads, residual=False)
|
| 173 |
+
# generate mother-set
|
| 174 |
+
position_bias_h = torch.arange(1 - self.H_sp, self.H_sp)
|
| 175 |
+
position_bias_w = torch.arange(1 - self.W_sp, self.W_sp)
|
| 176 |
+
biases = torch.stack(torch.meshgrid([position_bias_h, position_bias_w]))
|
| 177 |
+
biases = biases.flatten(1).transpose(0, 1).contiguous().float()
|
| 178 |
+
self.register_buffer('rpe_biases', biases)
|
| 179 |
+
|
| 180 |
+
# get pair-wise relative position index for each token inside the window
|
| 181 |
+
coords_h = torch.arange(self.H_sp)
|
| 182 |
+
coords_w = torch.arange(self.W_sp)
|
| 183 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w]))
|
| 184 |
+
coords_flatten = torch.flatten(coords, 1)
|
| 185 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]
|
| 186 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous()
|
| 187 |
+
relative_coords[:, :, 0] += self.H_sp - 1
|
| 188 |
+
relative_coords[:, :, 1] += self.W_sp - 1
|
| 189 |
+
relative_coords[:, :, 0] *= 2 * self.W_sp - 1
|
| 190 |
+
relative_position_index = relative_coords.sum(-1)
|
| 191 |
+
self.register_buffer('relative_position_index', relative_position_index)
|
| 192 |
+
|
| 193 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
| 194 |
+
|
| 195 |
+
def im2win(self, x, H, W):
|
| 196 |
+
B, N, C = x.shape
|
| 197 |
+
x = x.transpose(-2,-1).contiguous().view(B, C, H, W)
|
| 198 |
+
x = img2windows(x, self.H_sp, self.W_sp)
|
| 199 |
+
x = x.reshape(-1, self.H_sp* self.W_sp, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3).contiguous()
|
| 200 |
+
return x
|
| 201 |
+
|
| 202 |
+
def forward(self, qkv, H, W, mask=None):
|
| 203 |
+
"""
|
| 204 |
+
Input: qkv: (B, 3*L, C), H, W, mask: (B, N, N), N is the window size
|
| 205 |
+
Output: x (B, H, W, C)
|
| 206 |
+
"""
|
| 207 |
+
q,k,v = qkv[0], qkv[1], qkv[2]
|
| 208 |
+
|
| 209 |
+
B, L, C = q.shape
|
| 210 |
+
assert L == H * W, "flatten img_tokens has wrong size"
|
| 211 |
+
|
| 212 |
+
# partition the q,k,v, image to window
|
| 213 |
+
q = self.im2win(q, H, W)
|
| 214 |
+
k = self.im2win(k, H, W)
|
| 215 |
+
v = self.im2win(v, H, W)
|
| 216 |
+
|
| 217 |
+
q = q * self.scale
|
| 218 |
+
attn = (q @ k.transpose(-2, -1)) # B head N C @ B head C N --> B head N N
|
| 219 |
+
|
| 220 |
+
# calculate drpe
|
| 221 |
+
if self.position_bias:
|
| 222 |
+
pos = self.pos(self.rpe_biases)
|
| 223 |
+
# select position bias
|
| 224 |
+
relative_position_bias = pos[self.relative_position_index.view(-1)].view(
|
| 225 |
+
self.H_sp * self.W_sp, self.H_sp * self.W_sp, -1)
|
| 226 |
+
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()
|
| 227 |
+
attn = attn + relative_position_bias.unsqueeze(0)
|
| 228 |
+
|
| 229 |
+
N = attn.shape[3]
|
| 230 |
+
|
| 231 |
+
# use mask for shift window
|
| 232 |
+
if mask is not None:
|
| 233 |
+
nW = mask.shape[0]
|
| 234 |
+
attn = attn.view(B, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
|
| 235 |
+
attn = attn.view(-1, self.num_heads, N, N)
|
| 236 |
+
|
| 237 |
+
attn = nn.functional.softmax(attn, dim=-1, dtype=attn.dtype)
|
| 238 |
+
attn = self.attn_drop(attn)
|
| 239 |
+
|
| 240 |
+
x = (attn @ v)
|
| 241 |
+
x = x.transpose(1, 2).reshape(-1, self.H_sp* self.W_sp, C) # B head N N @ B head N C
|
| 242 |
+
|
| 243 |
+
# merge the window, window to image
|
| 244 |
+
x = windows2img(x, self.H_sp, self.W_sp, H, W) # B H' W' C
|
| 245 |
+
|
| 246 |
+
return x
|
| 247 |
+
|
| 248 |
+
|
| 249 |
+
class Axial_Spatial_Attention(nn.Module):
|
| 250 |
+
""" Axial Spatial Self-Attention
|
| 251 |
+
Args:
|
| 252 |
+
dim (int): Number of input channels.
|
| 253 |
+
num_heads (int): Number of attention heads. Default: 6
|
| 254 |
+
split_size (tuple(int)): Height and Width of spatial window.
|
| 255 |
+
shift_size (tuple(int)): Shift size for spatial window.
|
| 256 |
+
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
|
| 257 |
+
qk_scale (float | None): Override default qk scale of head_dim ** -0.5 if set.
|
| 258 |
+
drop (float): Dropout rate. Default: 0.0
|
| 259 |
+
attn_drop (float): Attention dropout rate. Default: 0.0
|
| 260 |
+
rg_idx (int): The indentix of Residual Group (RG)
|
| 261 |
+
b_idx (int): The indentix of Block in each RG
|
| 262 |
+
"""
|
| 263 |
+
def __init__(self, dim, num_heads,
|
| 264 |
+
reso=64, split_size=[8,8], shift_size=[1,2], qkv_bias=False, qk_scale=None,
|
| 265 |
+
drop=0., attn_drop=0., rg_idx=0, b_idx=0):
|
| 266 |
+
super().__init__()
|
| 267 |
+
self.dim = dim
|
| 268 |
+
self.num_heads = num_heads
|
| 269 |
+
self.split_size = split_size
|
| 270 |
+
self.shift_size = shift_size
|
| 271 |
+
self.b_idx = b_idx
|
| 272 |
+
self.rg_idx = rg_idx
|
| 273 |
+
self.patches_resolution = reso
|
| 274 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
| 275 |
+
|
| 276 |
+
assert 0 <= self.shift_size[0] < self.split_size[0], "shift_size must in 0-split_size0"
|
| 277 |
+
assert 0 <= self.shift_size[1] < self.split_size[1], "shift_size must in 0-split_size1"
|
| 278 |
+
|
| 279 |
+
self.branch_num = 2
|
| 280 |
+
|
| 281 |
+
self.proj = nn.Linear(dim, dim)
|
| 282 |
+
self.proj_drop = nn.Dropout(drop)
|
| 283 |
+
|
| 284 |
+
self.attns = nn.ModuleList([
|
| 285 |
+
Spatial_Attention(
|
| 286 |
+
dim//2, idx = i,
|
| 287 |
+
split_size=split_size, num_heads=num_heads//2, dim_out=dim//2,
|
| 288 |
+
qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, position_bias=True)
|
| 289 |
+
for i in range(self.branch_num)])
|
| 290 |
+
|
| 291 |
+
if (self.rg_idx % 2 == 0 and self.b_idx > 0 and (self.b_idx - 2) % 4 == 0) or (self.rg_idx % 2 != 0 and self.b_idx % 4 == 0):
|
| 292 |
+
attn_mask = self.calculate_mask(self.patches_resolution, self.patches_resolution)
|
| 293 |
+
self.register_buffer("attn_mask_0", attn_mask[0])
|
| 294 |
+
self.register_buffer("attn_mask_1", attn_mask[1])
|
| 295 |
+
else:
|
| 296 |
+
attn_mask = None
|
| 297 |
+
self.register_buffer("attn_mask_0", None)
|
| 298 |
+
self.register_buffer("attn_mask_1", None)
|
| 299 |
+
|
| 300 |
+
# Adaptive Interaction Module
|
| 301 |
+
self.dwconv = nn.Sequential(
|
| 302 |
+
nn.Conv2d(dim, dim, kernel_size=3, stride=1, padding=1,groups=dim),
|
| 303 |
+
nn.BatchNorm2d(dim),
|
| 304 |
+
nn.GELU()
|
| 305 |
+
)
|
| 306 |
+
self.channel_interaction = nn.Sequential(
|
| 307 |
+
nn.AdaptiveAvgPool2d(1),
|
| 308 |
+
nn.Conv2d(dim, dim // 8, kernel_size=1),
|
| 309 |
+
nn.BatchNorm2d(dim // 8),
|
| 310 |
+
nn.GELU(),
|
| 311 |
+
nn.Conv2d(dim // 8, dim, kernel_size=1),
|
| 312 |
+
)
|
| 313 |
+
self.spatial_interaction = nn.Sequential(
|
| 314 |
+
nn.Conv2d(dim, dim // 16, kernel_size=1),
|
| 315 |
+
nn.BatchNorm2d(dim // 16),
|
| 316 |
+
nn.GELU(),
|
| 317 |
+
nn.Conv2d(dim // 16, 1, kernel_size=1)
|
| 318 |
+
)
|
| 319 |
+
|
| 320 |
+
def calculate_mask(self, H, W):
|
| 321 |
+
# The implementation builds on Swin Transformer code https://github.com/microsoft/Swin-Transformer/blob/main/models/swin_transformer.py
|
| 322 |
+
# calculate attention mask for shift window
|
| 323 |
+
img_mask_0 = torch.zeros((1, H, W, 1)) # 1 H W 1 idx=0
|
| 324 |
+
img_mask_1 = torch.zeros((1, H, W, 1)) # 1 H W 1 idx=1
|
| 325 |
+
h_slices_0 = (slice(0, -self.split_size[0]),
|
| 326 |
+
slice(-self.split_size[0], -self.shift_size[0]),
|
| 327 |
+
slice(-self.shift_size[0], None))
|
| 328 |
+
w_slices_0 = (slice(0, -self.split_size[1]),
|
| 329 |
+
slice(-self.split_size[1], -self.shift_size[1]),
|
| 330 |
+
slice(-self.shift_size[1], None))
|
| 331 |
+
|
| 332 |
+
h_slices_1 = (slice(0, -self.split_size[1]),
|
| 333 |
+
slice(-self.split_size[1], -self.shift_size[1]),
|
| 334 |
+
slice(-self.shift_size[1], None))
|
| 335 |
+
w_slices_1 = (slice(0, -self.split_size[0]),
|
| 336 |
+
slice(-self.split_size[0], -self.shift_size[0]),
|
| 337 |
+
slice(-self.shift_size[0], None))
|
| 338 |
+
cnt = 0
|
| 339 |
+
for h in h_slices_0:
|
| 340 |
+
for w in w_slices_0:
|
| 341 |
+
img_mask_0[:, h, w, :] = cnt
|
| 342 |
+
cnt += 1
|
| 343 |
+
cnt = 0
|
| 344 |
+
for h in h_slices_1:
|
| 345 |
+
for w in w_slices_1:
|
| 346 |
+
img_mask_1[:, h, w, :] = cnt
|
| 347 |
+
cnt += 1
|
| 348 |
+
|
| 349 |
+
# calculate mask for window-0
|
| 350 |
+
img_mask_0 = img_mask_0.view(1, H // self.split_size[0], self.split_size[0], W // self.split_size[1], self.split_size[1], 1)
|
| 351 |
+
img_mask_0 = img_mask_0.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, self.split_size[0], self.split_size[1], 1) # nW, sw[0], sw[1], 1
|
| 352 |
+
mask_windows_0 = img_mask_0.view(-1, self.split_size[0] * self.split_size[1])
|
| 353 |
+
attn_mask_0 = mask_windows_0.unsqueeze(1) - mask_windows_0.unsqueeze(2)
|
| 354 |
+
attn_mask_0 = attn_mask_0.masked_fill(attn_mask_0 != 0, float(-100.0)).masked_fill(attn_mask_0 == 0, float(0.0))
|
| 355 |
+
|
| 356 |
+
# calculate mask for window-1
|
| 357 |
+
img_mask_1 = img_mask_1.view(1, H // self.split_size[1], self.split_size[1], W // self.split_size[0], self.split_size[0], 1)
|
| 358 |
+
img_mask_1 = img_mask_1.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, self.split_size[1], self.split_size[0], 1) # nW, sw[1], sw[0], 1
|
| 359 |
+
mask_windows_1 = img_mask_1.view(-1, self.split_size[1] * self.split_size[0])
|
| 360 |
+
attn_mask_1 = mask_windows_1.unsqueeze(1) - mask_windows_1.unsqueeze(2)
|
| 361 |
+
attn_mask_1 = attn_mask_1.masked_fill(attn_mask_1 != 0, float(-100.0)).masked_fill(attn_mask_1 == 0, float(0.0))
|
| 362 |
+
|
| 363 |
+
return attn_mask_0, attn_mask_1
|
| 364 |
+
|
| 365 |
+
def forward(self, x, H, W):
|
| 366 |
+
"""
|
| 367 |
+
Input: x: (B, H*W, C), H, W
|
| 368 |
+
Output: x: (B, H*W, C)
|
| 369 |
+
"""
|
| 370 |
+
B, L, C = x.shape
|
| 371 |
+
assert L == H * W, "flatten img_tokens has wrong size"
|
| 372 |
+
|
| 373 |
+
qkv = self.qkv(x).reshape(B, -1, 3, C).permute(2, 0, 1, 3) # 3, B, HW, C
|
| 374 |
+
# V without partition
|
| 375 |
+
v = qkv[2].transpose(-2,-1).contiguous().view(B, C, H, W)
|
| 376 |
+
|
| 377 |
+
# image padding
|
| 378 |
+
max_split_size = max(self.split_size[0], self.split_size[1])
|
| 379 |
+
pad_l = pad_t = 0
|
| 380 |
+
pad_r = (max_split_size - W % max_split_size) % max_split_size
|
| 381 |
+
pad_b = (max_split_size - H % max_split_size) % max_split_size
|
| 382 |
+
|
| 383 |
+
qkv = qkv.reshape(3*B, H, W, C).permute(0, 3, 1, 2) # 3B C H W
|
| 384 |
+
qkv = F.pad(qkv, (pad_l, pad_r, pad_t, pad_b)).reshape(3, B, C, -1).transpose(-2, -1) # l r t b
|
| 385 |
+
_H = pad_b + H
|
| 386 |
+
_W = pad_r + W
|
| 387 |
+
_L = _H * _W
|
| 388 |
+
|
| 389 |
+
# window-0 and window-1 on split channels [C/2, C/2]; for square windows (e.g., 8x8), window-0 and window-1 can be merged
|
| 390 |
+
# shift in block: (0, 4, 8, ...), (2, 6, 10, ...), (0, 4, 8, ...), (2, 6, 10, ...), ...
|
| 391 |
+
if (self.rg_idx % 2 == 0 and self.b_idx > 0 and (self.b_idx - 2) % 4 == 0) or (self.rg_idx % 2 != 0 and self.b_idx % 4 == 0):
|
| 392 |
+
qkv = qkv.view(3, B, _H, _W, C)
|
| 393 |
+
qkv_0 = torch.roll(qkv[:,:,:,:,:C//2], shifts=(-self.shift_size[0], -self.shift_size[1]), dims=(2, 3))
|
| 394 |
+
qkv_0 = qkv_0.view(3, B, _L, C//2)
|
| 395 |
+
qkv_1 = torch.roll(qkv[:,:,:,:,C//2:], shifts=(-self.shift_size[1], -self.shift_size[0]), dims=(2, 3))
|
| 396 |
+
qkv_1 = qkv_1.view(3, B, _L, C//2)
|
| 397 |
+
|
| 398 |
+
if self.patches_resolution != _H or self.patches_resolution != _W:
|
| 399 |
+
mask_tmp = self.calculate_mask(_H, _W)
|
| 400 |
+
x1_shift = self.attns[0](qkv_0, _H, _W, mask=mask_tmp[0].to(x.device))
|
| 401 |
+
x2_shift = self.attns[1](qkv_1, _H, _W, mask=mask_tmp[1].to(x.device))
|
| 402 |
+
else:
|
| 403 |
+
x1_shift = self.attns[0](qkv_0, _H, _W, mask=self.attn_mask_0)
|
| 404 |
+
x2_shift = self.attns[1](qkv_1, _H, _W, mask=self.attn_mask_1)
|
| 405 |
+
|
| 406 |
+
x1 = torch.roll(x1_shift, shifts=(self.shift_size[0], self.shift_size[1]), dims=(1, 2))
|
| 407 |
+
x2 = torch.roll(x2_shift, shifts=(self.shift_size[1], self.shift_size[0]), dims=(1, 2))
|
| 408 |
+
x1 = x1[:, :H, :W, :].reshape(B, L, C//2)
|
| 409 |
+
x2 = x2[:, :H, :W, :].reshape(B, L, C//2)
|
| 410 |
+
# attention output
|
| 411 |
+
attened_x = torch.cat([x1,x2], dim=2)
|
| 412 |
+
|
| 413 |
+
else:
|
| 414 |
+
x1 = self.attns[0](qkv[:,:,:,:C//2], _H, _W)[:, :H, :W, :].reshape(B, L, C//2)
|
| 415 |
+
x2 = self.attns[1](qkv[:,:,:,C//2:], _H, _W)[:, :H, :W, :].reshape(B, L, C//2)
|
| 416 |
+
# attention output
|
| 417 |
+
attened_x = torch.cat([x1,x2], dim=2)
|
| 418 |
+
|
| 419 |
+
# convolution output
|
| 420 |
+
conv_x = self.dwconv(v)
|
| 421 |
+
|
| 422 |
+
# C-Map (before sigmoid)
|
| 423 |
+
channel_map = self.channel_interaction(conv_x).permute(0, 2, 3, 1).contiguous().view(B, 1, C)
|
| 424 |
+
# S-Map (before sigmoid)
|
| 425 |
+
attention_reshape = attened_x.transpose(-2,-1).contiguous().view(B, C, H, W)
|
| 426 |
+
spatial_map = self.spatial_interaction(attention_reshape)
|
| 427 |
+
|
| 428 |
+
# C-I
|
| 429 |
+
attened_x = attened_x * torch.sigmoid(channel_map)
|
| 430 |
+
# S-I
|
| 431 |
+
conv_x = torch.sigmoid(spatial_map) * conv_x
|
| 432 |
+
conv_x = conv_x.permute(0, 2, 3, 1).contiguous().view(B, L, C)
|
| 433 |
+
|
| 434 |
+
x = attened_x + conv_x
|
| 435 |
+
|
| 436 |
+
x = self.proj(x)
|
| 437 |
+
x = self.proj_drop(x)
|
| 438 |
+
|
| 439 |
+
return x
|
| 440 |
+
|
| 441 |
+
|
| 442 |
+
class Axial_Channel_Attention(nn.Module):
|
| 443 |
+
# The implementation builds on XCiT code https://github.com/facebookresearch/xcit
|
| 444 |
+
""" Axial Channel Self-Attention
|
| 445 |
+
Args:
|
| 446 |
+
dim (int): Number of input channels.
|
| 447 |
+
num_heads (int): Number of attention heads. Default: 6
|
| 448 |
+
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
|
| 449 |
+
qk_scale (float | None): Override default qk scale of head_dim ** -0.5 if set.
|
| 450 |
+
attn_drop (float): Attention dropout rate. Default: 0.0
|
| 451 |
+
drop_path (float): Stochastic depth rate. Default: 0.0
|
| 452 |
+
"""
|
| 453 |
+
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
|
| 454 |
+
super().__init__()
|
| 455 |
+
self.num_heads = num_heads
|
| 456 |
+
self.temperature = nn.Parameter(torch.ones(num_heads, 1, 1))
|
| 457 |
+
|
| 458 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
| 459 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
| 460 |
+
self.proj = nn.Linear(dim, dim)
|
| 461 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
| 462 |
+
|
| 463 |
+
# Adaptive Interaction Module
|
| 464 |
+
self.dwconv = nn.Sequential(
|
| 465 |
+
nn.Conv2d(dim, dim, kernel_size=3, stride=1, padding=1,groups=dim),
|
| 466 |
+
nn.BatchNorm2d(dim),
|
| 467 |
+
nn.GELU()
|
| 468 |
+
)
|
| 469 |
+
self.channel_interaction = nn.Sequential(
|
| 470 |
+
nn.AdaptiveAvgPool2d(1),
|
| 471 |
+
nn.Conv2d(dim, dim // 8, kernel_size=1),
|
| 472 |
+
nn.BatchNorm2d(dim // 8),
|
| 473 |
+
nn.GELU(),
|
| 474 |
+
nn.Conv2d(dim // 8, dim, kernel_size=1),
|
| 475 |
+
)
|
| 476 |
+
self.spatial_interaction = nn.Sequential(
|
| 477 |
+
nn.Conv2d(dim, dim // 16, kernel_size=1),
|
| 478 |
+
nn.BatchNorm2d(dim // 16),
|
| 479 |
+
nn.GELU(),
|
| 480 |
+
nn.Conv2d(dim // 16, 1, kernel_size=1)
|
| 481 |
+
)
|
| 482 |
+
|
| 483 |
+
def forward(self, x, H, W):
|
| 484 |
+
"""
|
| 485 |
+
Input: x: (B, H*W, C), H, W
|
| 486 |
+
Output: x: (B, H*W, C)
|
| 487 |
+
"""
|
| 488 |
+
B, N, C = x.shape
|
| 489 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads)
|
| 490 |
+
qkv = qkv.permute(2, 0, 3, 1, 4)
|
| 491 |
+
q, k, v = qkv[0], qkv[1], qkv[2]
|
| 492 |
+
|
| 493 |
+
q = q.transpose(-2, -1)
|
| 494 |
+
k = k.transpose(-2, -1)
|
| 495 |
+
v = v.transpose(-2, -1)
|
| 496 |
+
|
| 497 |
+
v_ = v.reshape(B, C, N).contiguous().view(B, C, H, W)
|
| 498 |
+
|
| 499 |
+
q = torch.nn.functional.normalize(q, dim=-1)
|
| 500 |
+
k = torch.nn.functional.normalize(k, dim=-1)
|
| 501 |
+
|
| 502 |
+
attn = (q @ k.transpose(-2, -1)) * self.temperature
|
| 503 |
+
attn = attn.softmax(dim=-1)
|
| 504 |
+
attn = self.attn_drop(attn)
|
| 505 |
+
|
| 506 |
+
# attention output
|
| 507 |
+
attened_x = (attn @ v).permute(0, 3, 1, 2).reshape(B, N, C)
|
| 508 |
+
|
| 509 |
+
# convolution output
|
| 510 |
+
conv_x = self.dwconv(v_)
|
| 511 |
+
|
| 512 |
+
# C-Map (before sigmoid)
|
| 513 |
+
attention_reshape = attened_x.transpose(-2,-1).contiguous().view(B, C, H, W)
|
| 514 |
+
channel_map = self.channel_interaction(attention_reshape)
|
| 515 |
+
# S-Map (before sigmoid)
|
| 516 |
+
spatial_map = self.spatial_interaction(conv_x).permute(0, 2, 3, 1).contiguous().view(B, N, 1)
|
| 517 |
+
|
| 518 |
+
# S-I
|
| 519 |
+
attened_x = attened_x * torch.sigmoid(spatial_map)
|
| 520 |
+
# C-I
|
| 521 |
+
conv_x = conv_x * torch.sigmoid(channel_map)
|
| 522 |
+
conv_x = conv_x.permute(0, 2, 3, 1).contiguous().view(B, N, C)
|
| 523 |
+
|
| 524 |
+
x = attened_x + conv_x
|
| 525 |
+
|
| 526 |
+
x = self.proj(x)
|
| 527 |
+
x = self.proj_drop(x)
|
| 528 |
+
|
| 529 |
+
return x
|
| 530 |
+
|
| 531 |
+
|
| 532 |
+
class DATB(nn.Module):
|
| 533 |
+
def __init__(self, dim, num_heads, reso=64, split_size=[2,4],shift_size=[1,2], expansion_factor=4., qkv_bias=False, qk_scale=None, drop=0.,
|
| 534 |
+
attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, rg_idx=0, b_idx=0):
|
| 535 |
+
super().__init__()
|
| 536 |
+
|
| 537 |
+
self.norm1 = norm_layer(dim)
|
| 538 |
+
|
| 539 |
+
if b_idx % 2 == 0:
|
| 540 |
+
# DSTB
|
| 541 |
+
self.attn = Axial_Spatial_Attention(
|
| 542 |
+
dim, num_heads=num_heads, reso=reso, split_size=split_size, shift_size=shift_size, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
| 543 |
+
drop=drop, attn_drop=attn_drop, rg_idx=rg_idx, b_idx=b_idx
|
| 544 |
+
)
|
| 545 |
+
else:
|
| 546 |
+
# DCTB
|
| 547 |
+
self.attn = Axial_Channel_Attention(
|
| 548 |
+
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop,
|
| 549 |
+
proj_drop=drop
|
| 550 |
+
)
|
| 551 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
| 552 |
+
|
| 553 |
+
ffn_hidden_dim = int(dim * expansion_factor)
|
| 554 |
+
self.ffn = SGFN(in_features=dim, hidden_features=ffn_hidden_dim, out_features=dim, act_layer=act_layer)
|
| 555 |
+
self.norm2 = norm_layer(dim)
|
| 556 |
+
|
| 557 |
+
def forward(self, x, x_size):
|
| 558 |
+
"""
|
| 559 |
+
Input: x: (B, H*W, C), x_size: (H, W)
|
| 560 |
+
Output: x: (B, H*W, C)
|
| 561 |
+
"""
|
| 562 |
+
H , W = x_size
|
| 563 |
+
x = x + self.drop_path(self.attn(self.norm1(x), H, W))
|
| 564 |
+
x = x + self.drop_path(self.ffn(self.norm2(x), H, W))
|
| 565 |
+
|
| 566 |
+
return x
|
| 567 |
+
|
| 568 |
+
|
| 569 |
+
class ResidualGroup(nn.Module):
|
| 570 |
+
""" ResidualGroup
|
| 571 |
+
Args:
|
| 572 |
+
dim (int): Number of input channels.
|
| 573 |
+
reso (int): Input resolution.
|
| 574 |
+
num_heads (int): Number of attention heads.
|
| 575 |
+
split_size (tuple(int)): Height and Width of spatial window.
|
| 576 |
+
expansion_factor (float): Ratio of ffn hidden dim to embedding dim.
|
| 577 |
+
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
|
| 578 |
+
qk_scale (float | None): Override default qk scale of head_dim ** -0.5 if set. Default: None
|
| 579 |
+
drop (float): Dropout rate. Default: 0
|
| 580 |
+
attn_drop(float): Attention dropout rate. Default: 0
|
| 581 |
+
drop_paths (float | None): Stochastic depth rate.
|
| 582 |
+
act_layer (nn.Module): Activation layer. Default: nn.GELU
|
| 583 |
+
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm
|
| 584 |
+
depth (int): Number of Cross Aggregation Transformer blocks in residual group.
|
| 585 |
+
use_chk (bool): Whether to use checkpointing to save memory.
|
| 586 |
+
resi_connection: The convolutional block before residual connection. '1conv'/'3conv'
|
| 587 |
+
"""
|
| 588 |
+
def __init__( self,
|
| 589 |
+
dim,
|
| 590 |
+
reso,
|
| 591 |
+
num_heads,
|
| 592 |
+
split_size=[2,4],
|
| 593 |
+
expansion_factor=4.,
|
| 594 |
+
qkv_bias=False,
|
| 595 |
+
qk_scale=None,
|
| 596 |
+
drop=0.,
|
| 597 |
+
attn_drop=0.,
|
| 598 |
+
drop_paths=None,
|
| 599 |
+
act_layer=nn.GELU,
|
| 600 |
+
norm_layer=nn.LayerNorm,
|
| 601 |
+
depth=2,
|
| 602 |
+
use_chk=False,
|
| 603 |
+
resi_connection='1conv',
|
| 604 |
+
rg_idx=0):
|
| 605 |
+
super().__init__()
|
| 606 |
+
self.use_chk = use_chk
|
| 607 |
+
self.reso = reso
|
| 608 |
+
|
| 609 |
+
self.blocks = nn.ModuleList([
|
| 610 |
+
DATB(
|
| 611 |
+
dim=dim,
|
| 612 |
+
num_heads=num_heads,
|
| 613 |
+
reso = reso,
|
| 614 |
+
split_size = split_size,
|
| 615 |
+
shift_size = [split_size[0]//2, split_size[1]//2],
|
| 616 |
+
expansion_factor=expansion_factor,
|
| 617 |
+
qkv_bias=qkv_bias,
|
| 618 |
+
qk_scale=qk_scale,
|
| 619 |
+
drop=drop,
|
| 620 |
+
attn_drop=attn_drop,
|
| 621 |
+
drop_path=drop_paths[i],
|
| 622 |
+
act_layer=act_layer,
|
| 623 |
+
norm_layer=norm_layer,
|
| 624 |
+
rg_idx = rg_idx,
|
| 625 |
+
b_idx = i,
|
| 626 |
+
)for i in range(depth)])
|
| 627 |
+
|
| 628 |
+
if resi_connection == '1conv':
|
| 629 |
+
self.conv = nn.Conv2d(dim, dim, 3, 1, 1)
|
| 630 |
+
elif resi_connection == '3conv':
|
| 631 |
+
self.conv = nn.Sequential(
|
| 632 |
+
nn.Conv2d(dim, dim // 4, 3, 1, 1), nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
| 633 |
+
nn.Conv2d(dim // 4, dim // 4, 1, 1, 0), nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
| 634 |
+
nn.Conv2d(dim // 4, dim, 3, 1, 1))
|
| 635 |
+
|
| 636 |
+
def forward(self, x, x_size):
|
| 637 |
+
"""
|
| 638 |
+
Input: x: (B, H*W, C), x_size: (H, W)
|
| 639 |
+
Output: x: (B, H*W, C)
|
| 640 |
+
"""
|
| 641 |
+
H, W = x_size
|
| 642 |
+
res = x
|
| 643 |
+
for blk in self.blocks:
|
| 644 |
+
if self.use_chk:
|
| 645 |
+
x = checkpoint.checkpoint(blk, x, x_size)
|
| 646 |
+
else:
|
| 647 |
+
x = blk(x, x_size)
|
| 648 |
+
x = rearrange(x, "b (h w) c -> b c h w", h=H, w=W)
|
| 649 |
+
x = self.conv(x)
|
| 650 |
+
x = rearrange(x, "b c h w -> b (h w) c")
|
| 651 |
+
x = res + x
|
| 652 |
+
|
| 653 |
+
return x
|
| 654 |
+
|
| 655 |
+
|
| 656 |
+
class Upsample(nn.Sequential):
|
| 657 |
+
"""Upsample module.
|
| 658 |
+
Args:
|
| 659 |
+
scale (int): Scale factor. Supported scales: 2^n and 3.
|
| 660 |
+
num_feat (int): Channel number of intermediate features.
|
| 661 |
+
"""
|
| 662 |
+
def __init__(self, scale, num_feat):
|
| 663 |
+
m = []
|
| 664 |
+
if (scale & (scale - 1)) == 0: # scale = 2^n
|
| 665 |
+
for _ in range(int(math.log(scale, 2))):
|
| 666 |
+
m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
|
| 667 |
+
m.append(nn.PixelShuffle(2))
|
| 668 |
+
elif scale == 3:
|
| 669 |
+
m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
|
| 670 |
+
m.append(nn.PixelShuffle(3))
|
| 671 |
+
else:
|
| 672 |
+
raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.')
|
| 673 |
+
super(Upsample, self).__init__(*m)
|
| 674 |
+
|
| 675 |
+
|
| 676 |
+
@ARCH_REGISTRY.register()
|
| 677 |
+
class DAT(nn.Module):
|
| 678 |
+
""" Dual Aggregation Transformer
|
| 679 |
+
Args:
|
| 680 |
+
img_size (int): Input image size. Default: 64
|
| 681 |
+
in_chans (int): Number of input image channels. Default: 3
|
| 682 |
+
embed_dim (int): Patch embedding dimension. Default: 180
|
| 683 |
+
depths (tuple(int)): Depth of each residual group (number of DATB in each RG).
|
| 684 |
+
split_size (tuple(int)): Height and Width of spatial window.
|
| 685 |
+
num_heads (tuple(int)): Number of attention heads in different residual groups.
|
| 686 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
|
| 687 |
+
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
|
| 688 |
+
qk_scale (float | None): Override default qk scale of head_dim ** -0.5 if set. Default: None
|
| 689 |
+
drop_rate (float): Dropout rate. Default: 0
|
| 690 |
+
attn_drop_rate (float): Attention dropout rate. Default: 0
|
| 691 |
+
drop_path_rate (float): Stochastic depth rate. Default: 0.1
|
| 692 |
+
act_layer (nn.Module): Activation layer. Default: nn.GELU
|
| 693 |
+
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm
|
| 694 |
+
use_chk (bool): Whether to use checkpointing to save memory.
|
| 695 |
+
upscale: Upscale factor. 2/3/4/8 for image SR, 1 for compress artifact reduction
|
| 696 |
+
img_range: Image range. 1. or 255.
|
| 697 |
+
resi_connection: The convolutional block before residual connection. '1conv'/'3conv'
|
| 698 |
+
"""
|
| 699 |
+
def __init__(self,
|
| 700 |
+
img_size=64,
|
| 701 |
+
in_chans=3,
|
| 702 |
+
embed_dim=180,
|
| 703 |
+
split_size=[2,4],
|
| 704 |
+
depth=[2,2,2,2],
|
| 705 |
+
num_heads=[2,2,2,2],
|
| 706 |
+
expansion_factor=4.,
|
| 707 |
+
qkv_bias=True,
|
| 708 |
+
qk_scale=None,
|
| 709 |
+
drop_rate=0.,
|
| 710 |
+
attn_drop_rate=0.,
|
| 711 |
+
drop_path_rate=0.1,
|
| 712 |
+
act_layer=nn.GELU,
|
| 713 |
+
norm_layer=nn.LayerNorm,
|
| 714 |
+
use_chk=False,
|
| 715 |
+
upscale=2,
|
| 716 |
+
img_range=1.,
|
| 717 |
+
resi_connection='1conv',
|
| 718 |
+
**kwargs):
|
| 719 |
+
super().__init__()
|
| 720 |
+
|
| 721 |
+
num_in_ch = in_chans
|
| 722 |
+
num_out_ch = in_chans
|
| 723 |
+
num_feat = 64
|
| 724 |
+
self.img_range = img_range
|
| 725 |
+
if in_chans == 3:
|
| 726 |
+
rgb_mean = (0.4488, 0.4371, 0.4040)
|
| 727 |
+
self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1)
|
| 728 |
+
else:
|
| 729 |
+
self.mean = torch.zeros(1, 1, 1, 1)
|
| 730 |
+
self.upscale = upscale
|
| 731 |
+
|
| 732 |
+
# ------------------------- 1, Shallow Feature Extraction ------------------------- #
|
| 733 |
+
self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1)
|
| 734 |
+
|
| 735 |
+
# ------------------------- 2, Deep Feature Extraction ------------------------- #
|
| 736 |
+
self.num_layers = len(depth)
|
| 737 |
+
self.use_chk = use_chk
|
| 738 |
+
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
|
| 739 |
+
heads=num_heads
|
| 740 |
+
|
| 741 |
+
self.before_RG = nn.Sequential(
|
| 742 |
+
Rearrange('b c h w -> b (h w) c'),
|
| 743 |
+
nn.LayerNorm(embed_dim)
|
| 744 |
+
)
|
| 745 |
+
|
| 746 |
+
curr_dim = embed_dim
|
| 747 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, np.sum(depth))] # stochastic depth decay rule
|
| 748 |
+
|
| 749 |
+
self.layers = nn.ModuleList()
|
| 750 |
+
for i in range(self.num_layers):
|
| 751 |
+
layer = ResidualGroup(
|
| 752 |
+
dim=embed_dim,
|
| 753 |
+
num_heads=heads[i],
|
| 754 |
+
reso=img_size,
|
| 755 |
+
split_size=split_size,
|
| 756 |
+
expansion_factor=expansion_factor,
|
| 757 |
+
qkv_bias=qkv_bias,
|
| 758 |
+
qk_scale=qk_scale,
|
| 759 |
+
drop=drop_rate,
|
| 760 |
+
attn_drop=attn_drop_rate,
|
| 761 |
+
drop_paths=dpr[sum(depth[:i]):sum(depth[:i + 1])],
|
| 762 |
+
act_layer=act_layer,
|
| 763 |
+
norm_layer=norm_layer,
|
| 764 |
+
depth=depth[i],
|
| 765 |
+
use_chk=use_chk,
|
| 766 |
+
resi_connection=resi_connection,
|
| 767 |
+
rg_idx=i)
|
| 768 |
+
self.layers.append(layer)
|
| 769 |
+
|
| 770 |
+
self.norm = norm_layer(curr_dim)
|
| 771 |
+
# build the last conv layer in deep feature extraction
|
| 772 |
+
if resi_connection == '1conv':
|
| 773 |
+
self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1)
|
| 774 |
+
elif resi_connection == '3conv':
|
| 775 |
+
# to save parameters and memory
|
| 776 |
+
self.conv_after_body = nn.Sequential(
|
| 777 |
+
nn.Conv2d(embed_dim, embed_dim // 4, 3, 1, 1), nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
| 778 |
+
nn.Conv2d(embed_dim // 4, embed_dim // 4, 1, 1, 0), nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
| 779 |
+
nn.Conv2d(embed_dim // 4, embed_dim, 3, 1, 1))
|
| 780 |
+
|
| 781 |
+
# ------------------------- 3, Reconstruction ------------------------- #
|
| 782 |
+
self.conv_before_upsample = nn.Sequential(
|
| 783 |
+
nn.Conv2d(embed_dim, num_feat, 3, 1, 1), nn.LeakyReLU(inplace=True))
|
| 784 |
+
self.upsample = Upsample(upscale, num_feat)
|
| 785 |
+
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
|
| 786 |
+
|
| 787 |
+
self.apply(self._init_weights)
|
| 788 |
+
|
| 789 |
+
def _init_weights(self, m):
|
| 790 |
+
if isinstance(m, nn.Linear):
|
| 791 |
+
trunc_normal_(m.weight, std=.02)
|
| 792 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
| 793 |
+
nn.init.constant_(m.bias, 0)
|
| 794 |
+
elif isinstance(m, (nn.LayerNorm, nn.BatchNorm2d, nn.GroupNorm, nn.InstanceNorm2d)):
|
| 795 |
+
nn.init.constant_(m.bias, 0)
|
| 796 |
+
nn.init.constant_(m.weight, 1.0)
|
| 797 |
+
|
| 798 |
+
def forward_features(self, x):
|
| 799 |
+
_, _, H, W = x.shape
|
| 800 |
+
x_size = [H, W]
|
| 801 |
+
x = self.before_RG(x)
|
| 802 |
+
for layer in self.layers:
|
| 803 |
+
x = layer(x, x_size)
|
| 804 |
+
x = self.norm(x)
|
| 805 |
+
x = rearrange(x, "b (h w) c -> b c h w", h=H, w=W)
|
| 806 |
+
|
| 807 |
+
return x
|
| 808 |
+
|
| 809 |
+
def forward(self, x):
|
| 810 |
+
"""
|
| 811 |
+
Input: x: (B, C, H, W)
|
| 812 |
+
"""
|
| 813 |
+
self.mean = self.mean.type_as(x)
|
| 814 |
+
x = (x - self.mean) * self.img_range
|
| 815 |
+
|
| 816 |
+
x = self.conv_first(x)
|
| 817 |
+
x = self.conv_after_body(self.forward_features(x)) + x
|
| 818 |
+
x = self.conv_before_upsample(x)
|
| 819 |
+
x = self.conv_last(self.upsample(x))
|
| 820 |
+
|
| 821 |
+
x = x / self.img_range + self.mean
|
| 822 |
+
return x
|
| 823 |
+
|
| 824 |
+
|
| 825 |
+
if __name__ == '__main__':
|
| 826 |
+
upscale = 1
|
| 827 |
+
height = 64
|
| 828 |
+
width = 64
|
| 829 |
+
model = DAT(
|
| 830 |
+
upscale=2,
|
| 831 |
+
in_chans=3,
|
| 832 |
+
img_size=64,
|
| 833 |
+
img_range=1.,
|
| 834 |
+
depth=[6,6,6,6,6,6],
|
| 835 |
+
embed_dim=180,
|
| 836 |
+
num_heads=[6,6,6,6,6,6],
|
| 837 |
+
mlp_ratio=2,
|
| 838 |
+
resi_connection='1conv',
|
| 839 |
+
split_size=[8,16],
|
| 840 |
+
).cuda().eval()
|
| 841 |
+
print(model)
|
| 842 |
+
print(height, width)
|
| 843 |
+
|
| 844 |
+
x = torch.randn((1, 3, height, width)).cuda()
|
| 845 |
+
x = model(x)
|
| 846 |
+
print(x.shape)
|
basicsr/data/__init__.py
ADDED
|
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import importlib
|
| 2 |
+
import numpy as np
|
| 3 |
+
import random
|
| 4 |
+
import torch
|
| 5 |
+
import torch.utils.data
|
| 6 |
+
from copy import deepcopy
|
| 7 |
+
from functools import partial
|
| 8 |
+
from os import path as osp
|
| 9 |
+
|
| 10 |
+
from basicsr.data.prefetch_dataloader import PrefetchDataLoader
|
| 11 |
+
from basicsr.utils import get_root_logger, scandir
|
| 12 |
+
from basicsr.utils.dist_util import get_dist_info
|
| 13 |
+
from basicsr.utils.registry import DATASET_REGISTRY
|
| 14 |
+
|
| 15 |
+
__all__ = ['build_dataset', 'build_dataloader']
|
| 16 |
+
|
| 17 |
+
# automatically scan and import dataset modules for registry
|
| 18 |
+
# scan all the files under the data folder with '_dataset' in file names
|
| 19 |
+
data_folder = osp.dirname(osp.abspath(__file__))
|
| 20 |
+
dataset_filenames = [osp.splitext(osp.basename(v))[0] for v in scandir(data_folder) if v.endswith('_dataset.py')]
|
| 21 |
+
# import all the dataset modules
|
| 22 |
+
_dataset_modules = [importlib.import_module(f'basicsr.data.{file_name}') for file_name in dataset_filenames]
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def build_dataset(dataset_opt):
|
| 26 |
+
"""Build dataset from options.
|
| 27 |
+
|
| 28 |
+
Args:
|
| 29 |
+
dataset_opt (dict): Configuration for dataset. It must contain:
|
| 30 |
+
name (str): Dataset name.
|
| 31 |
+
type (str): Dataset type.
|
| 32 |
+
"""
|
| 33 |
+
dataset_opt = deepcopy(dataset_opt)
|
| 34 |
+
dataset = DATASET_REGISTRY.get(dataset_opt['type'])(dataset_opt)
|
| 35 |
+
logger = get_root_logger()
|
| 36 |
+
logger.info(f'Dataset [{dataset.__class__.__name__}] - {dataset_opt["name"]} is built.')
|
| 37 |
+
return dataset
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def build_dataloader(dataset, dataset_opt, num_gpu=1, dist=False, sampler=None, seed=None):
|
| 41 |
+
"""Build dataloader.
|
| 42 |
+
|
| 43 |
+
Args:
|
| 44 |
+
dataset (torch.utils.data.Dataset): Dataset.
|
| 45 |
+
dataset_opt (dict): Dataset options. It contains the following keys:
|
| 46 |
+
phase (str): 'train' or 'val'.
|
| 47 |
+
num_worker_per_gpu (int): Number of workers for each GPU.
|
| 48 |
+
batch_size_per_gpu (int): Training batch size for each GPU.
|
| 49 |
+
num_gpu (int): Number of GPUs. Used only in the train phase.
|
| 50 |
+
Default: 1.
|
| 51 |
+
dist (bool): Whether in distributed training. Used only in the train
|
| 52 |
+
phase. Default: False.
|
| 53 |
+
sampler (torch.utils.data.sampler): Data sampler. Default: None.
|
| 54 |
+
seed (int | None): Seed. Default: None
|
| 55 |
+
"""
|
| 56 |
+
phase = dataset_opt['phase']
|
| 57 |
+
rank, _ = get_dist_info()
|
| 58 |
+
if phase == 'train':
|
| 59 |
+
if dist: # distributed training
|
| 60 |
+
batch_size = dataset_opt['batch_size_per_gpu']
|
| 61 |
+
num_workers = dataset_opt['num_worker_per_gpu']
|
| 62 |
+
else: # non-distributed training
|
| 63 |
+
multiplier = 1 if num_gpu == 0 else num_gpu
|
| 64 |
+
batch_size = dataset_opt['batch_size_per_gpu'] * multiplier
|
| 65 |
+
num_workers = dataset_opt['num_worker_per_gpu'] * multiplier
|
| 66 |
+
dataloader_args = dict(
|
| 67 |
+
dataset=dataset,
|
| 68 |
+
batch_size=batch_size,
|
| 69 |
+
shuffle=False,
|
| 70 |
+
num_workers=num_workers,
|
| 71 |
+
sampler=sampler,
|
| 72 |
+
drop_last=True)
|
| 73 |
+
if sampler is None:
|
| 74 |
+
dataloader_args['shuffle'] = True
|
| 75 |
+
dataloader_args['worker_init_fn'] = partial(
|
| 76 |
+
worker_init_fn, num_workers=num_workers, rank=rank, seed=seed) if seed is not None else None
|
| 77 |
+
elif phase in ['val', 'test']: # validation
|
| 78 |
+
dataloader_args = dict(dataset=dataset, batch_size=1, shuffle=False, num_workers=0)
|
| 79 |
+
else:
|
| 80 |
+
raise ValueError(f"Wrong dataset phase: {phase}. Supported ones are 'train', 'val' and 'test'.")
|
| 81 |
+
|
| 82 |
+
dataloader_args['pin_memory'] = dataset_opt.get('pin_memory', False)
|
| 83 |
+
dataloader_args['persistent_workers'] = dataset_opt.get('persistent_workers', False)
|
| 84 |
+
|
| 85 |
+
prefetch_mode = dataset_opt.get('prefetch_mode')
|
| 86 |
+
if prefetch_mode == 'cpu': # CPUPrefetcher
|
| 87 |
+
num_prefetch_queue = dataset_opt.get('num_prefetch_queue', 1)
|
| 88 |
+
logger = get_root_logger()
|
| 89 |
+
logger.info(f'Use {prefetch_mode} prefetch dataloader: num_prefetch_queue = {num_prefetch_queue}')
|
| 90 |
+
return PrefetchDataLoader(num_prefetch_queue=num_prefetch_queue, **dataloader_args)
|
| 91 |
+
else:
|
| 92 |
+
# prefetch_mode=None: Normal dataloader
|
| 93 |
+
# prefetch_mode='cuda': dataloader for CUDAPrefetcher
|
| 94 |
+
return torch.utils.data.DataLoader(**dataloader_args)
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
def worker_init_fn(worker_id, num_workers, rank, seed):
|
| 98 |
+
# Set the worker seed to num_workers * rank + worker_id + seed
|
| 99 |
+
worker_seed = num_workers * rank + worker_id + seed
|
| 100 |
+
np.random.seed(worker_seed)
|
| 101 |
+
random.seed(worker_seed)
|
basicsr/data/data_sampler.py
ADDED
|
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
import torch
|
| 3 |
+
from torch.utils.data.sampler import Sampler
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class EnlargedSampler(Sampler):
|
| 7 |
+
"""Sampler that restricts data loading to a subset of the dataset.
|
| 8 |
+
|
| 9 |
+
Modified from torch.utils.data.distributed.DistributedSampler
|
| 10 |
+
Support enlarging the dataset for iteration-based training, for saving
|
| 11 |
+
time when restart the dataloader after each epoch
|
| 12 |
+
|
| 13 |
+
Args:
|
| 14 |
+
dataset (torch.utils.data.Dataset): Dataset used for sampling.
|
| 15 |
+
num_replicas (int | None): Number of processes participating in
|
| 16 |
+
the training. It is usually the world_size.
|
| 17 |
+
rank (int | None): Rank of the current process within num_replicas.
|
| 18 |
+
ratio (int): Enlarging ratio. Default: 1.
|
| 19 |
+
"""
|
| 20 |
+
|
| 21 |
+
def __init__(self, dataset, num_replicas, rank, ratio=1):
|
| 22 |
+
self.dataset = dataset
|
| 23 |
+
self.num_replicas = num_replicas
|
| 24 |
+
self.rank = rank
|
| 25 |
+
self.epoch = 0
|
| 26 |
+
self.num_samples = math.ceil(len(self.dataset) * ratio / self.num_replicas)
|
| 27 |
+
self.total_size = self.num_samples * self.num_replicas
|
| 28 |
+
|
| 29 |
+
def __iter__(self):
|
| 30 |
+
# deterministically shuffle based on epoch
|
| 31 |
+
g = torch.Generator()
|
| 32 |
+
g.manual_seed(self.epoch)
|
| 33 |
+
indices = torch.randperm(self.total_size, generator=g).tolist()
|
| 34 |
+
|
| 35 |
+
dataset_size = len(self.dataset)
|
| 36 |
+
indices = [v % dataset_size for v in indices]
|
| 37 |
+
|
| 38 |
+
# subsample
|
| 39 |
+
indices = indices[self.rank:self.total_size:self.num_replicas]
|
| 40 |
+
assert len(indices) == self.num_samples
|
| 41 |
+
|
| 42 |
+
return iter(indices)
|
| 43 |
+
|
| 44 |
+
def __len__(self):
|
| 45 |
+
return self.num_samples
|
| 46 |
+
|
| 47 |
+
def set_epoch(self, epoch):
|
| 48 |
+
self.epoch = epoch
|
basicsr/data/data_util.py
ADDED
|
@@ -0,0 +1,283 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import cv2
|
| 2 |
+
import numpy as np
|
| 3 |
+
import torch
|
| 4 |
+
from os import path as osp
|
| 5 |
+
from torch.nn import functional as F
|
| 6 |
+
|
| 7 |
+
from basicsr.utils import img2tensor, scandir
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def generate_frame_indices(crt_idx, max_frame_num, num_frames, padding='reflection'):
|
| 11 |
+
"""Generate an index list for reading `num_frames` frames from a sequence
|
| 12 |
+
of images.
|
| 13 |
+
|
| 14 |
+
Args:
|
| 15 |
+
crt_idx (int): Current center index.
|
| 16 |
+
max_frame_num (int): Max number of the sequence of images (from 1).
|
| 17 |
+
num_frames (int): Reading num_frames frames.
|
| 18 |
+
padding (str): Padding mode, one of
|
| 19 |
+
'replicate' | 'reflection' | 'reflection_circle' | 'circle'
|
| 20 |
+
Examples: current_idx = 0, num_frames = 5
|
| 21 |
+
The generated frame indices under different padding mode:
|
| 22 |
+
replicate: [0, 0, 0, 1, 2]
|
| 23 |
+
reflection: [2, 1, 0, 1, 2]
|
| 24 |
+
reflection_circle: [4, 3, 0, 1, 2]
|
| 25 |
+
circle: [3, 4, 0, 1, 2]
|
| 26 |
+
|
| 27 |
+
Returns:
|
| 28 |
+
list[int]: A list of indices.
|
| 29 |
+
"""
|
| 30 |
+
assert num_frames % 2 == 1, 'num_frames should be an odd number.'
|
| 31 |
+
assert padding in ('replicate', 'reflection', 'reflection_circle', 'circle'), f'Wrong padding mode: {padding}.'
|
| 32 |
+
|
| 33 |
+
max_frame_num = max_frame_num - 1 # start from 0
|
| 34 |
+
num_pad = num_frames // 2
|
| 35 |
+
|
| 36 |
+
indices = []
|
| 37 |
+
for i in range(crt_idx - num_pad, crt_idx + num_pad + 1):
|
| 38 |
+
if i < 0:
|
| 39 |
+
if padding == 'replicate':
|
| 40 |
+
pad_idx = 0
|
| 41 |
+
elif padding == 'reflection':
|
| 42 |
+
pad_idx = -i
|
| 43 |
+
elif padding == 'reflection_circle':
|
| 44 |
+
pad_idx = crt_idx + num_pad - i
|
| 45 |
+
else:
|
| 46 |
+
pad_idx = num_frames + i
|
| 47 |
+
elif i > max_frame_num:
|
| 48 |
+
if padding == 'replicate':
|
| 49 |
+
pad_idx = max_frame_num
|
| 50 |
+
elif padding == 'reflection':
|
| 51 |
+
pad_idx = max_frame_num * 2 - i
|
| 52 |
+
elif padding == 'reflection_circle':
|
| 53 |
+
pad_idx = (crt_idx - num_pad) - (i - max_frame_num)
|
| 54 |
+
else:
|
| 55 |
+
pad_idx = i - num_frames
|
| 56 |
+
else:
|
| 57 |
+
pad_idx = i
|
| 58 |
+
indices.append(pad_idx)
|
| 59 |
+
return indices
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
def paired_paths_from_lmdb(folders, keys):
|
| 63 |
+
"""Generate paired paths from lmdb files.
|
| 64 |
+
|
| 65 |
+
Contents of lmdb. Taking the `lq.lmdb` for example, the file structure is:
|
| 66 |
+
|
| 67 |
+
lq.lmdb
|
| 68 |
+
├── data.mdb
|
| 69 |
+
├── lock.mdb
|
| 70 |
+
├── meta_info.txt
|
| 71 |
+
|
| 72 |
+
The data.mdb and lock.mdb are standard lmdb files and you can refer to
|
| 73 |
+
https://lmdb.readthedocs.io/en/release/ for more details.
|
| 74 |
+
|
| 75 |
+
The meta_info.txt is a specified txt file to record the meta information
|
| 76 |
+
of our datasets. It will be automatically created when preparing
|
| 77 |
+
datasets by our provided dataset tools.
|
| 78 |
+
Each line in the txt file records
|
| 79 |
+
1)image name (with extension),
|
| 80 |
+
2)image shape,
|
| 81 |
+
3)compression level, separated by a white space.
|
| 82 |
+
Example: `baboon.png (120,125,3) 1`
|
| 83 |
+
|
| 84 |
+
We use the image name without extension as the lmdb key.
|
| 85 |
+
Note that we use the same key for the corresponding lq and gt images.
|
| 86 |
+
|
| 87 |
+
Args:
|
| 88 |
+
folders (list[str]): A list of folder path. The order of list should
|
| 89 |
+
be [input_folder, gt_folder].
|
| 90 |
+
keys (list[str]): A list of keys identifying folders. The order should
|
| 91 |
+
be in consistent with folders, e.g., ['lq', 'gt'].
|
| 92 |
+
Note that this key is different from lmdb keys.
|
| 93 |
+
|
| 94 |
+
Returns:
|
| 95 |
+
list[str]: Returned path list.
|
| 96 |
+
"""
|
| 97 |
+
assert len(folders) == 2, ('The len of folders should be 2 with [input_folder, gt_folder]. '
|
| 98 |
+
f'But got {len(folders)}')
|
| 99 |
+
assert len(keys) == 2, f'The len of keys should be 2 with [input_key, gt_key]. But got {len(keys)}'
|
| 100 |
+
input_folder, gt_folder = folders
|
| 101 |
+
input_key, gt_key = keys
|
| 102 |
+
|
| 103 |
+
if not (input_folder.endswith('.lmdb') and gt_folder.endswith('.lmdb')):
|
| 104 |
+
raise ValueError(f'{input_key} folder and {gt_key} folder should both in lmdb '
|
| 105 |
+
f'formats. But received {input_key}: {input_folder}; '
|
| 106 |
+
f'{gt_key}: {gt_folder}')
|
| 107 |
+
# ensure that the two meta_info files are the same
|
| 108 |
+
with open(osp.join(input_folder, 'meta_info.txt')) as fin:
|
| 109 |
+
input_lmdb_keys = [line.split('.')[0] for line in fin]
|
| 110 |
+
with open(osp.join(gt_folder, 'meta_info.txt')) as fin:
|
| 111 |
+
gt_lmdb_keys = [line.split('.')[0] for line in fin]
|
| 112 |
+
if set(input_lmdb_keys) != set(gt_lmdb_keys):
|
| 113 |
+
raise ValueError(f'Keys in {input_key}_folder and {gt_key}_folder are different.')
|
| 114 |
+
else:
|
| 115 |
+
paths = []
|
| 116 |
+
for lmdb_key in sorted(input_lmdb_keys):
|
| 117 |
+
paths.append(dict([(f'{input_key}_path', lmdb_key), (f'{gt_key}_path', lmdb_key)]))
|
| 118 |
+
return paths
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
def paired_paths_from_meta_info_file(folders, keys, meta_info_file, filename_tmpl):
|
| 122 |
+
"""Generate paired paths from an meta information file.
|
| 123 |
+
|
| 124 |
+
Each line in the meta information file contains the image names and
|
| 125 |
+
image shape (usually for gt), separated by a white space.
|
| 126 |
+
|
| 127 |
+
Example of an meta information file:
|
| 128 |
+
```
|
| 129 |
+
0001_s001.png (480,480,3)
|
| 130 |
+
0001_s002.png (480,480,3)
|
| 131 |
+
```
|
| 132 |
+
|
| 133 |
+
Args:
|
| 134 |
+
folders (list[str]): A list of folder path. The order of list should
|
| 135 |
+
be [input_folder, gt_folder].
|
| 136 |
+
keys (list[str]): A list of keys identifying folders. The order should
|
| 137 |
+
be in consistent with folders, e.g., ['lq', 'gt'].
|
| 138 |
+
meta_info_file (str): Path to the meta information file.
|
| 139 |
+
filename_tmpl (str): Template for each filename. Note that the
|
| 140 |
+
template excludes the file extension. Usually the filename_tmpl is
|
| 141 |
+
for files in the input folder.
|
| 142 |
+
|
| 143 |
+
Returns:
|
| 144 |
+
list[str]: Returned path list.
|
| 145 |
+
"""
|
| 146 |
+
assert len(folders) == 2, ('The len of folders should be 2 with [input_folder, gt_folder]. '
|
| 147 |
+
f'But got {len(folders)}')
|
| 148 |
+
assert len(keys) == 2, f'The len of keys should be 2 with [input_key, gt_key]. But got {len(keys)}'
|
| 149 |
+
input_folder, gt_folder = folders
|
| 150 |
+
input_key, gt_key = keys
|
| 151 |
+
|
| 152 |
+
with open(meta_info_file, 'r') as fin:
|
| 153 |
+
gt_names = [line.strip().split(' ')[0] for line in fin]
|
| 154 |
+
|
| 155 |
+
paths = []
|
| 156 |
+
for gt_name in gt_names:
|
| 157 |
+
basename, ext = osp.splitext(osp.basename(gt_name))
|
| 158 |
+
input_name = f'{filename_tmpl.format(basename)}{ext}'
|
| 159 |
+
input_path = osp.join(input_folder, input_name)
|
| 160 |
+
gt_path = osp.join(gt_folder, gt_name)
|
| 161 |
+
paths.append(dict([(f'{input_key}_path', input_path), (f'{gt_key}_path', gt_path)]))
|
| 162 |
+
return paths
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
def paired_paths_from_folder(folders, keys, filename_tmpl, task):
|
| 166 |
+
"""Generate paired paths from folders.
|
| 167 |
+
|
| 168 |
+
Args:
|
| 169 |
+
folders (list[str]): A list of folder path. The order of list should
|
| 170 |
+
be [input_folder, gt_folder].
|
| 171 |
+
keys (list[str]): A list of keys identifying folders. The order should
|
| 172 |
+
be in consistent with folders, e.g., ['lq', 'gt'].
|
| 173 |
+
filename_tmpl (str): Template for each filename. Note that the
|
| 174 |
+
template excludes the file extension. Usually the filename_tmpl is
|
| 175 |
+
for files in the input folder.
|
| 176 |
+
|
| 177 |
+
Returns:
|
| 178 |
+
list[str]: Returned path list.
|
| 179 |
+
"""
|
| 180 |
+
assert len(folders) == 2, ('The len of folders should be 2 with [input_folder, gt_folder]. '
|
| 181 |
+
f'But got {len(folders)}')
|
| 182 |
+
assert len(keys) == 2, f'The len of keys should be 2 with [input_key, gt_key]. But got {len(keys)}'
|
| 183 |
+
input_folder, gt_folder = folders
|
| 184 |
+
input_key, gt_key = keys
|
| 185 |
+
|
| 186 |
+
input_paths = list(scandir(input_folder))
|
| 187 |
+
gt_paths = list(scandir(gt_folder))
|
| 188 |
+
assert len(input_paths) == len(gt_paths), (f'{input_key} and {gt_key} datasets have different number of images: '
|
| 189 |
+
f'{len(input_paths)}, {len(gt_paths)}.')
|
| 190 |
+
paths = []
|
| 191 |
+
for gt_path in gt_paths:
|
| 192 |
+
basename, ext = osp.splitext(osp.basename(gt_path))
|
| 193 |
+
if task == "CAR":
|
| 194 |
+
input_name = f'{filename_tmpl.format(basename)}.jpg'
|
| 195 |
+
else:
|
| 196 |
+
input_name = f'{filename_tmpl.format(basename)}{ext}'
|
| 197 |
+
input_path = osp.join(input_folder, input_name)
|
| 198 |
+
assert input_name in input_paths, f'{input_name} is not in {input_key}_paths.'
|
| 199 |
+
gt_path = osp.join(gt_folder, gt_path)
|
| 200 |
+
paths.append(dict([(f'{input_key}_path', input_path), (f'{gt_key}_path', gt_path)]))
|
| 201 |
+
return paths
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
def paths_from_folder(folder):
|
| 205 |
+
"""Generate paths from folder.
|
| 206 |
+
|
| 207 |
+
Args:
|
| 208 |
+
folder (str): Folder path.
|
| 209 |
+
|
| 210 |
+
Returns:
|
| 211 |
+
list[str]: Returned path list.
|
| 212 |
+
"""
|
| 213 |
+
|
| 214 |
+
paths = list(scandir(folder))
|
| 215 |
+
paths = [osp.join(folder, path) for path in paths]
|
| 216 |
+
return paths
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
def paths_from_lmdb(folder):
|
| 220 |
+
"""Generate paths from lmdb.
|
| 221 |
+
|
| 222 |
+
Args:
|
| 223 |
+
folder (str): Folder path.
|
| 224 |
+
|
| 225 |
+
Returns:
|
| 226 |
+
list[str]: Returned path list.
|
| 227 |
+
"""
|
| 228 |
+
if not folder.endswith('.lmdb'):
|
| 229 |
+
raise ValueError(f'Folder {folder}folder should in lmdb format.')
|
| 230 |
+
with open(osp.join(folder, 'meta_info.txt')) as fin:
|
| 231 |
+
paths = [line.split('.')[0] for line in fin]
|
| 232 |
+
return paths
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
def generate_gaussian_kernel(kernel_size=13, sigma=1.6):
|
| 236 |
+
"""Generate Gaussian kernel used in `duf_downsample`.
|
| 237 |
+
|
| 238 |
+
Args:
|
| 239 |
+
kernel_size (int): Kernel size. Default: 13.
|
| 240 |
+
sigma (float): Sigma of the Gaussian kernel. Default: 1.6.
|
| 241 |
+
|
| 242 |
+
Returns:
|
| 243 |
+
np.array: The Gaussian kernel.
|
| 244 |
+
"""
|
| 245 |
+
from scipy.ndimage import filters as filters
|
| 246 |
+
kernel = np.zeros((kernel_size, kernel_size))
|
| 247 |
+
# set element at the middle to one, a dirac delta
|
| 248 |
+
kernel[kernel_size // 2, kernel_size // 2] = 1
|
| 249 |
+
# gaussian-smooth the dirac, resulting in a gaussian filter
|
| 250 |
+
return filters.gaussian_filter(kernel, sigma)
|
| 251 |
+
|
| 252 |
+
|
| 253 |
+
def duf_downsample(x, kernel_size=13, scale=4):
|
| 254 |
+
"""Downsamping with Gaussian kernel used in the DUF official code.
|
| 255 |
+
|
| 256 |
+
Args:
|
| 257 |
+
x (Tensor): Frames to be downsampled, with shape (b, t, c, h, w).
|
| 258 |
+
kernel_size (int): Kernel size. Default: 13.
|
| 259 |
+
scale (int): Downsampling factor. Supported scale: (2, 3, 4).
|
| 260 |
+
Default: 4.
|
| 261 |
+
|
| 262 |
+
Returns:
|
| 263 |
+
Tensor: DUF downsampled frames.
|
| 264 |
+
"""
|
| 265 |
+
assert scale in (2, 3, 4), f'Only support scale (2, 3, 4), but got {scale}.'
|
| 266 |
+
|
| 267 |
+
squeeze_flag = False
|
| 268 |
+
if x.ndim == 4:
|
| 269 |
+
squeeze_flag = True
|
| 270 |
+
x = x.unsqueeze(0)
|
| 271 |
+
b, t, c, h, w = x.size()
|
| 272 |
+
x = x.view(-1, 1, h, w)
|
| 273 |
+
pad_w, pad_h = kernel_size // 2 + scale * 2, kernel_size // 2 + scale * 2
|
| 274 |
+
x = F.pad(x, (pad_w, pad_w, pad_h, pad_h), 'reflect')
|
| 275 |
+
|
| 276 |
+
gaussian_filter = generate_gaussian_kernel(kernel_size, 0.4 * scale)
|
| 277 |
+
gaussian_filter = torch.from_numpy(gaussian_filter).type_as(x).unsqueeze(0).unsqueeze(0)
|
| 278 |
+
x = F.conv2d(x, gaussian_filter, stride=scale)
|
| 279 |
+
x = x[:, :, 2:-2, 2:-2]
|
| 280 |
+
x = x.view(b, t, c, x.size(2), x.size(3))
|
| 281 |
+
if squeeze_flag:
|
| 282 |
+
x = x.squeeze(0)
|
| 283 |
+
return x
|
basicsr/data/paired_image_dataset.py
ADDED
|
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from torch.utils import data as data
|
| 2 |
+
from torchvision.transforms.functional import normalize
|
| 3 |
+
|
| 4 |
+
from basicsr.data.data_util import paired_paths_from_folder, paired_paths_from_lmdb, paired_paths_from_meta_info_file
|
| 5 |
+
from basicsr.data.transforms import augment, paired_random_crop
|
| 6 |
+
from basicsr.utils import FileClient, imfrombytes, img2tensor
|
| 7 |
+
from basicsr.utils.matlab_functions import bgr2ycbcr
|
| 8 |
+
from basicsr.utils.registry import DATASET_REGISTRY
|
| 9 |
+
|
| 10 |
+
import numpy as np
|
| 11 |
+
|
| 12 |
+
@DATASET_REGISTRY.register()
|
| 13 |
+
class PairedImageDataset(data.Dataset):
|
| 14 |
+
"""Paired image dataset for image restoration.
|
| 15 |
+
|
| 16 |
+
Read LQ (Low Quality, e.g. LR (Low Resolution), blurry, noisy, etc) and GT image pairs.
|
| 17 |
+
|
| 18 |
+
There are three modes:
|
| 19 |
+
1. 'lmdb': Use lmdb files.
|
| 20 |
+
If opt['io_backend'] == lmdb.
|
| 21 |
+
2. 'meta_info_file': Use meta information file to generate paths.
|
| 22 |
+
If opt['io_backend'] != lmdb and opt['meta_info_file'] is not None.
|
| 23 |
+
3. 'folder': Scan folders to generate paths.
|
| 24 |
+
The rest.
|
| 25 |
+
|
| 26 |
+
Args:
|
| 27 |
+
opt (dict): Config for train datasets. It contains the following keys:
|
| 28 |
+
dataroot_gt (str): Data root path for gt.
|
| 29 |
+
dataroot_lq (str): Data root path for lq.
|
| 30 |
+
meta_info_file (str): Path for meta information file.
|
| 31 |
+
io_backend (dict): IO backend type and other kwarg.
|
| 32 |
+
filename_tmpl (str): Template for each filename. Note that the template excludes the file extension.
|
| 33 |
+
Default: '{}'.
|
| 34 |
+
gt_size (int): Cropped patched size for gt patches.
|
| 35 |
+
use_hflip (bool): Use horizontal flips.
|
| 36 |
+
use_rot (bool): Use rotation (use vertical flip and transposing h and w for implementation).
|
| 37 |
+
|
| 38 |
+
scale (bool): Scale, which will be added automatically.
|
| 39 |
+
phase (str): 'train' or 'val'.
|
| 40 |
+
"""
|
| 41 |
+
|
| 42 |
+
def __init__(self, opt):
|
| 43 |
+
super(PairedImageDataset, self).__init__()
|
| 44 |
+
self.opt = opt
|
| 45 |
+
# file client (io backend)
|
| 46 |
+
self.file_client = None
|
| 47 |
+
self.io_backend_opt = opt['io_backend']
|
| 48 |
+
self.mean = opt['mean'] if 'mean' in opt else None
|
| 49 |
+
self.task = opt['task'] if 'task' in opt else None
|
| 50 |
+
self.std = opt['std'] if 'std' in opt else None
|
| 51 |
+
|
| 52 |
+
self.gt_folder, self.lq_folder = opt['dataroot_gt'], opt['dataroot_lq']
|
| 53 |
+
if 'filename_tmpl' in opt:
|
| 54 |
+
self.filename_tmpl = opt['filename_tmpl']
|
| 55 |
+
else:
|
| 56 |
+
self.filename_tmpl = '{}'
|
| 57 |
+
|
| 58 |
+
if self.io_backend_opt['type'] == 'lmdb':
|
| 59 |
+
self.io_backend_opt['db_paths'] = [self.lq_folder, self.gt_folder]
|
| 60 |
+
self.io_backend_opt['client_keys'] = ['lq', 'gt']
|
| 61 |
+
self.paths = paired_paths_from_lmdb([self.lq_folder, self.gt_folder], ['lq', 'gt'])
|
| 62 |
+
elif 'meta_info_file' in self.opt and self.opt['meta_info_file'] is not None:
|
| 63 |
+
self.paths = paired_paths_from_meta_info_file([self.lq_folder, self.gt_folder], ['lq', 'gt'],
|
| 64 |
+
self.opt['meta_info_file'], self.filename_tmpl)
|
| 65 |
+
else:
|
| 66 |
+
self.paths = paired_paths_from_folder([self.lq_folder, self.gt_folder], ['lq', 'gt'], self.filename_tmpl, self.task)
|
| 67 |
+
|
| 68 |
+
def __getitem__(self, index):
|
| 69 |
+
if self.file_client is None:
|
| 70 |
+
self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt)
|
| 71 |
+
|
| 72 |
+
scale = self.opt['scale']
|
| 73 |
+
|
| 74 |
+
# Load gt and lq images. Dimension order: HWC; channel order: BGR;
|
| 75 |
+
|
| 76 |
+
if self.task == 'CAR':
|
| 77 |
+
# image range: [0, 255], int., H W 1
|
| 78 |
+
gt_path = self.paths[index]['gt_path']
|
| 79 |
+
img_bytes = self.file_client.get(gt_path, 'gt')
|
| 80 |
+
img_gt = imfrombytes(img_bytes, flag='grayscale', float32=False)
|
| 81 |
+
lq_path = self.paths[index]['lq_path']
|
| 82 |
+
img_bytes = self.file_client.get(lq_path, 'lq')
|
| 83 |
+
img_lq = imfrombytes(img_bytes, flag='grayscale', float32=False)
|
| 84 |
+
img_gt = np.expand_dims(img_gt, axis=2).astype(np.float32) / 255.
|
| 85 |
+
img_lq = np.expand_dims(img_lq, axis=2).astype(np.float32) / 255.
|
| 86 |
+
|
| 87 |
+
elif self.task == 'Color-DN':
|
| 88 |
+
gt_path = self.paths[index]['gt_path']
|
| 89 |
+
lq_path = gt_path
|
| 90 |
+
img_bytes = self.file_client.get(gt_path, 'gt')
|
| 91 |
+
img_gt = imfrombytes(img_bytes, float32=True)
|
| 92 |
+
if self.opt['phase'] != 'train':
|
| 93 |
+
np.random.seed(seed=0)
|
| 94 |
+
img_lq = img_gt + np.random.normal(0, self.noise/255., img_gt.shape)
|
| 95 |
+
|
| 96 |
+
else:
|
| 97 |
+
# image range: [0, 1], float32., H W 3
|
| 98 |
+
gt_path = self.paths[index]['gt_path']
|
| 99 |
+
img_bytes = self.file_client.get(gt_path, 'gt')
|
| 100 |
+
img_gt = imfrombytes(img_bytes, float32=True)
|
| 101 |
+
lq_path = self.paths[index]['lq_path']
|
| 102 |
+
img_bytes = self.file_client.get(lq_path, 'lq')
|
| 103 |
+
img_lq = imfrombytes(img_bytes, float32=True)
|
| 104 |
+
|
| 105 |
+
# augmentation for training
|
| 106 |
+
if self.opt['phase'] == 'train':
|
| 107 |
+
gt_size = self.opt['gt_size']
|
| 108 |
+
# random crop
|
| 109 |
+
img_gt, img_lq = paired_random_crop(img_gt, img_lq, gt_size, scale, gt_path)
|
| 110 |
+
# flip, rotation
|
| 111 |
+
img_gt, img_lq = augment([img_gt, img_lq], self.opt['use_hflip'], self.opt['use_rot'])
|
| 112 |
+
|
| 113 |
+
# color space transform
|
| 114 |
+
if 'color' in self.opt and self.opt['color'] == 'y':
|
| 115 |
+
img_gt = bgr2ycbcr(img_gt, y_only=True)[..., None]
|
| 116 |
+
img_lq = bgr2ycbcr(img_lq, y_only=True)[..., None]
|
| 117 |
+
|
| 118 |
+
# crop the unmatched GT images during validation or testing, especially for SR benchmark datasets
|
| 119 |
+
# TODO: It is better to update the datasets, rather than force to crop
|
| 120 |
+
if self.opt['phase'] != 'train':
|
| 121 |
+
img_gt = img_gt[0:img_lq.shape[0] * scale, 0:img_lq.shape[1] * scale, :]
|
| 122 |
+
|
| 123 |
+
# BGR to RGB, HWC to CHW, numpy to tensor
|
| 124 |
+
img_gt, img_lq = img2tensor([img_gt, img_lq], bgr2rgb=True, float32=True)
|
| 125 |
+
# normalize
|
| 126 |
+
if self.mean is not None or self.std is not None:
|
| 127 |
+
normalize(img_lq, self.mean, self.std, inplace=True)
|
| 128 |
+
normalize(img_gt, self.mean, self.std, inplace=True)
|
| 129 |
+
|
| 130 |
+
# print(img_lq.shape,img_gt.shape,img_lq.min(),img_gt.min(),img_lq.max(),img_gt.max(),lq_path,gt_path)
|
| 131 |
+
|
| 132 |
+
return {'lq': img_lq, 'gt': img_gt, 'lq_path': lq_path, 'gt_path': gt_path}
|
| 133 |
+
|
| 134 |
+
def __len__(self):
|
| 135 |
+
return len(self.paths)
|
basicsr/data/prefetch_dataloader.py
ADDED
|
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import queue as Queue
|
| 2 |
+
import threading
|
| 3 |
+
import torch
|
| 4 |
+
from torch.utils.data import DataLoader
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class PrefetchGenerator(threading.Thread):
|
| 8 |
+
"""A general prefetch generator.
|
| 9 |
+
|
| 10 |
+
Ref:
|
| 11 |
+
https://stackoverflow.com/questions/7323664/python-generator-pre-fetch
|
| 12 |
+
|
| 13 |
+
Args:
|
| 14 |
+
generator: Python generator.
|
| 15 |
+
num_prefetch_queue (int): Number of prefetch queue.
|
| 16 |
+
"""
|
| 17 |
+
|
| 18 |
+
def __init__(self, generator, num_prefetch_queue):
|
| 19 |
+
threading.Thread.__init__(self)
|
| 20 |
+
self.queue = Queue.Queue(num_prefetch_queue)
|
| 21 |
+
self.generator = generator
|
| 22 |
+
self.daemon = True
|
| 23 |
+
self.start()
|
| 24 |
+
|
| 25 |
+
def run(self):
|
| 26 |
+
for item in self.generator:
|
| 27 |
+
self.queue.put(item)
|
| 28 |
+
self.queue.put(None)
|
| 29 |
+
|
| 30 |
+
def __next__(self):
|
| 31 |
+
next_item = self.queue.get()
|
| 32 |
+
if next_item is None:
|
| 33 |
+
raise StopIteration
|
| 34 |
+
return next_item
|
| 35 |
+
|
| 36 |
+
def __iter__(self):
|
| 37 |
+
return self
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
class PrefetchDataLoader(DataLoader):
|
| 41 |
+
"""Prefetch version of dataloader.
|
| 42 |
+
|
| 43 |
+
Ref:
|
| 44 |
+
https://github.com/IgorSusmelj/pytorch-styleguide/issues/5#
|
| 45 |
+
|
| 46 |
+
TODO:
|
| 47 |
+
Need to test on single gpu and ddp (multi-gpu). There is a known issue in
|
| 48 |
+
ddp.
|
| 49 |
+
|
| 50 |
+
Args:
|
| 51 |
+
num_prefetch_queue (int): Number of prefetch queue.
|
| 52 |
+
kwargs (dict): Other arguments for dataloader.
|
| 53 |
+
"""
|
| 54 |
+
|
| 55 |
+
def __init__(self, num_prefetch_queue, **kwargs):
|
| 56 |
+
self.num_prefetch_queue = num_prefetch_queue
|
| 57 |
+
super(PrefetchDataLoader, self).__init__(**kwargs)
|
| 58 |
+
|
| 59 |
+
def __iter__(self):
|
| 60 |
+
return PrefetchGenerator(super().__iter__(), self.num_prefetch_queue)
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
class CPUPrefetcher():
|
| 64 |
+
"""CPU prefetcher.
|
| 65 |
+
|
| 66 |
+
Args:
|
| 67 |
+
loader: Dataloader.
|
| 68 |
+
"""
|
| 69 |
+
|
| 70 |
+
def __init__(self, loader):
|
| 71 |
+
self.ori_loader = loader
|
| 72 |
+
self.loader = iter(loader)
|
| 73 |
+
|
| 74 |
+
def next(self):
|
| 75 |
+
try:
|
| 76 |
+
return next(self.loader)
|
| 77 |
+
except StopIteration:
|
| 78 |
+
return None
|
| 79 |
+
|
| 80 |
+
def reset(self):
|
| 81 |
+
self.loader = iter(self.ori_loader)
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
class CUDAPrefetcher():
|
| 85 |
+
"""CUDA prefetcher.
|
| 86 |
+
|
| 87 |
+
Ref:
|
| 88 |
+
https://github.com/NVIDIA/apex/issues/304#
|
| 89 |
+
|
| 90 |
+
It may consums more GPU memory.
|
| 91 |
+
|
| 92 |
+
Args:
|
| 93 |
+
loader: Dataloader.
|
| 94 |
+
opt (dict): Options.
|
| 95 |
+
"""
|
| 96 |
+
|
| 97 |
+
def __init__(self, loader, opt):
|
| 98 |
+
self.ori_loader = loader
|
| 99 |
+
self.loader = iter(loader)
|
| 100 |
+
self.opt = opt
|
| 101 |
+
self.stream = torch.cuda.Stream()
|
| 102 |
+
self.device = torch.device('cuda' if opt['num_gpu'] != 0 else 'cpu')
|
| 103 |
+
self.preload()
|
| 104 |
+
|
| 105 |
+
def preload(self):
|
| 106 |
+
try:
|
| 107 |
+
self.batch = next(self.loader) # self.batch is a dict
|
| 108 |
+
except StopIteration:
|
| 109 |
+
self.batch = None
|
| 110 |
+
return None
|
| 111 |
+
# put tensors to gpu
|
| 112 |
+
with torch.cuda.stream(self.stream):
|
| 113 |
+
for k, v in self.batch.items():
|
| 114 |
+
if torch.is_tensor(v):
|
| 115 |
+
self.batch[k] = self.batch[k].to(device=self.device, non_blocking=True)
|
| 116 |
+
|
| 117 |
+
def next(self):
|
| 118 |
+
torch.cuda.current_stream().wait_stream(self.stream)
|
| 119 |
+
batch = self.batch
|
| 120 |
+
self.preload()
|
| 121 |
+
return batch
|
| 122 |
+
|
| 123 |
+
def reset(self):
|
| 124 |
+
self.loader = iter(self.ori_loader)
|
| 125 |
+
self.preload()
|
basicsr/data/transforms.py
ADDED
|
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import cv2
|
| 2 |
+
import random
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def mod_crop(img, scale):
|
| 7 |
+
"""Mod crop images, used during testing.
|
| 8 |
+
|
| 9 |
+
Args:
|
| 10 |
+
img (ndarray): Input image.
|
| 11 |
+
scale (int): Scale factor.
|
| 12 |
+
|
| 13 |
+
Returns:
|
| 14 |
+
ndarray: Result image.
|
| 15 |
+
"""
|
| 16 |
+
img = img.copy()
|
| 17 |
+
if img.ndim in (2, 3):
|
| 18 |
+
h, w = img.shape[0], img.shape[1]
|
| 19 |
+
h_remainder, w_remainder = h % scale, w % scale
|
| 20 |
+
img = img[:h - h_remainder, :w - w_remainder, ...]
|
| 21 |
+
else:
|
| 22 |
+
raise ValueError(f'Wrong img ndim: {img.ndim}.')
|
| 23 |
+
return img
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def paired_random_crop(img_gts, img_lqs, gt_patch_size, scale, gt_path=None):
|
| 27 |
+
"""Paired random crop. Support Numpy array and Tensor inputs.
|
| 28 |
+
|
| 29 |
+
It crops lists of lq and gt images with corresponding locations.
|
| 30 |
+
|
| 31 |
+
Args:
|
| 32 |
+
img_gts (list[ndarray] | ndarray | list[Tensor] | Tensor): GT images. Note that all images
|
| 33 |
+
should have the same shape. If the input is an ndarray, it will
|
| 34 |
+
be transformed to a list containing itself.
|
| 35 |
+
img_lqs (list[ndarray] | ndarray): LQ images. Note that all images
|
| 36 |
+
should have the same shape. If the input is an ndarray, it will
|
| 37 |
+
be transformed to a list containing itself.
|
| 38 |
+
gt_patch_size (int): GT patch size.
|
| 39 |
+
scale (int): Scale factor.
|
| 40 |
+
gt_path (str): Path to ground-truth. Default: None.
|
| 41 |
+
|
| 42 |
+
Returns:
|
| 43 |
+
list[ndarray] | ndarray: GT images and LQ images. If returned results
|
| 44 |
+
only have one element, just return ndarray.
|
| 45 |
+
"""
|
| 46 |
+
|
| 47 |
+
if not isinstance(img_gts, list):
|
| 48 |
+
img_gts = [img_gts]
|
| 49 |
+
if not isinstance(img_lqs, list):
|
| 50 |
+
img_lqs = [img_lqs]
|
| 51 |
+
|
| 52 |
+
# determine input type: Numpy array or Tensor
|
| 53 |
+
input_type = 'Tensor' if torch.is_tensor(img_gts[0]) else 'Numpy'
|
| 54 |
+
|
| 55 |
+
if input_type == 'Tensor':
|
| 56 |
+
h_lq, w_lq = img_lqs[0].size()[-2:]
|
| 57 |
+
h_gt, w_gt = img_gts[0].size()[-2:]
|
| 58 |
+
else:
|
| 59 |
+
h_lq, w_lq = img_lqs[0].shape[0:2]
|
| 60 |
+
h_gt, w_gt = img_gts[0].shape[0:2]
|
| 61 |
+
lq_patch_size = gt_patch_size // scale
|
| 62 |
+
|
| 63 |
+
if h_gt != h_lq * scale or w_gt != w_lq * scale:
|
| 64 |
+
raise ValueError(f'Scale mismatches. GT ({h_gt}, {w_gt}) is not {scale}x ',
|
| 65 |
+
f'multiplication of LQ ({h_lq}, {w_lq}).')
|
| 66 |
+
if h_lq < lq_patch_size or w_lq < lq_patch_size:
|
| 67 |
+
raise ValueError(f'LQ ({h_lq}, {w_lq}) is smaller than patch size '
|
| 68 |
+
f'({lq_patch_size}, {lq_patch_size}). '
|
| 69 |
+
f'Please remove {gt_path}.')
|
| 70 |
+
|
| 71 |
+
# randomly choose top and left coordinates for lq patch
|
| 72 |
+
top = random.randint(0, h_lq - lq_patch_size)
|
| 73 |
+
left = random.randint(0, w_lq - lq_patch_size)
|
| 74 |
+
|
| 75 |
+
# crop lq patch
|
| 76 |
+
if input_type == 'Tensor':
|
| 77 |
+
img_lqs = [v[:, :, top:top + lq_patch_size, left:left + lq_patch_size] for v in img_lqs]
|
| 78 |
+
else:
|
| 79 |
+
img_lqs = [v[top:top + lq_patch_size, left:left + lq_patch_size, ...] for v in img_lqs]
|
| 80 |
+
|
| 81 |
+
# crop corresponding gt patch
|
| 82 |
+
top_gt, left_gt = int(top * scale), int(left * scale)
|
| 83 |
+
if input_type == 'Tensor':
|
| 84 |
+
img_gts = [v[:, :, top_gt:top_gt + gt_patch_size, left_gt:left_gt + gt_patch_size] for v in img_gts]
|
| 85 |
+
else:
|
| 86 |
+
img_gts = [v[top_gt:top_gt + gt_patch_size, left_gt:left_gt + gt_patch_size, ...] for v in img_gts]
|
| 87 |
+
if len(img_gts) == 1:
|
| 88 |
+
img_gts = img_gts[0]
|
| 89 |
+
if len(img_lqs) == 1:
|
| 90 |
+
img_lqs = img_lqs[0]
|
| 91 |
+
return img_gts, img_lqs
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def augment(imgs, hflip=True, rotation=True, flows=None, return_status=False):
|
| 95 |
+
"""Augment: horizontal flips OR rotate (0, 90, 180, 270 degrees).
|
| 96 |
+
|
| 97 |
+
We use vertical flip and transpose for rotation implementation.
|
| 98 |
+
All the images in the list use the same augmentation.
|
| 99 |
+
|
| 100 |
+
Args:
|
| 101 |
+
imgs (list[ndarray] | ndarray): Images to be augmented. If the input
|
| 102 |
+
is an ndarray, it will be transformed to a list.
|
| 103 |
+
hflip (bool): Horizontal flip. Default: True.
|
| 104 |
+
rotation (bool): Ratotation. Default: True.
|
| 105 |
+
flows (list[ndarray]: Flows to be augmented. If the input is an
|
| 106 |
+
ndarray, it will be transformed to a list.
|
| 107 |
+
Dimension is (h, w, 2). Default: None.
|
| 108 |
+
return_status (bool): Return the status of flip and rotation.
|
| 109 |
+
Default: False.
|
| 110 |
+
|
| 111 |
+
Returns:
|
| 112 |
+
list[ndarray] | ndarray: Augmented images and flows. If returned
|
| 113 |
+
results only have one element, just return ndarray.
|
| 114 |
+
|
| 115 |
+
"""
|
| 116 |
+
hflip = hflip and random.random() < 0.5
|
| 117 |
+
vflip = rotation and random.random() < 0.5
|
| 118 |
+
rot90 = rotation and random.random() < 0.5
|
| 119 |
+
|
| 120 |
+
def _augment(img):
|
| 121 |
+
if hflip: # horizontal
|
| 122 |
+
cv2.flip(img, 1, img)
|
| 123 |
+
if vflip: # vertical
|
| 124 |
+
cv2.flip(img, 0, img)
|
| 125 |
+
if rot90:
|
| 126 |
+
img = img.transpose(1, 0, 2)
|
| 127 |
+
return img
|
| 128 |
+
|
| 129 |
+
def _augment_flow(flow):
|
| 130 |
+
if hflip: # horizontal
|
| 131 |
+
cv2.flip(flow, 1, flow)
|
| 132 |
+
flow[:, :, 0] *= -1
|
| 133 |
+
if vflip: # vertical
|
| 134 |
+
cv2.flip(flow, 0, flow)
|
| 135 |
+
flow[:, :, 1] *= -1
|
| 136 |
+
if rot90:
|
| 137 |
+
flow = flow.transpose(1, 0, 2)
|
| 138 |
+
flow = flow[:, :, [1, 0]]
|
| 139 |
+
return flow
|
| 140 |
+
|
| 141 |
+
if not isinstance(imgs, list):
|
| 142 |
+
imgs = [imgs]
|
| 143 |
+
imgs = [_augment(img) for img in imgs]
|
| 144 |
+
if len(imgs) == 1:
|
| 145 |
+
imgs = imgs[0]
|
| 146 |
+
|
| 147 |
+
if flows is not None:
|
| 148 |
+
if not isinstance(flows, list):
|
| 149 |
+
flows = [flows]
|
| 150 |
+
flows = [_augment_flow(flow) for flow in flows]
|
| 151 |
+
if len(flows) == 1:
|
| 152 |
+
flows = flows[0]
|
| 153 |
+
return imgs, flows
|
| 154 |
+
else:
|
| 155 |
+
if return_status:
|
| 156 |
+
return imgs, (hflip, vflip, rot90)
|
| 157 |
+
else:
|
| 158 |
+
return imgs
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
def img_rotate(img, angle, center=None, scale=1.0):
|
| 162 |
+
"""Rotate image.
|
| 163 |
+
|
| 164 |
+
Args:
|
| 165 |
+
img (ndarray): Image to be rotated.
|
| 166 |
+
angle (float): Rotation angle in degrees. Positive values mean
|
| 167 |
+
counter-clockwise rotation.
|
| 168 |
+
center (tuple[int]): Rotation center. If the center is None,
|
| 169 |
+
initialize it as the center of the image. Default: None.
|
| 170 |
+
scale (float): Isotropic scale factor. Default: 1.0.
|
| 171 |
+
"""
|
| 172 |
+
(h, w) = img.shape[:2]
|
| 173 |
+
|
| 174 |
+
if center is None:
|
| 175 |
+
center = (w // 2, h // 2)
|
| 176 |
+
|
| 177 |
+
matrix = cv2.getRotationMatrix2D(center, angle, scale)
|
| 178 |
+
rotated_img = cv2.warpAffine(img, matrix, (w, h))
|
| 179 |
+
return rotated_img
|
basicsr/losses/__init__.py
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from copy import deepcopy
|
| 2 |
+
|
| 3 |
+
from basicsr.utils import get_root_logger
|
| 4 |
+
from basicsr.utils.registry import LOSS_REGISTRY
|
| 5 |
+
from .losses import (CharbonnierLoss, GANLoss, L1Loss, MSELoss, WeightedTVLoss, g_path_regularize,
|
| 6 |
+
gradient_penalty_loss, r1_penalty)
|
| 7 |
+
|
| 8 |
+
__all__ = [
|
| 9 |
+
'L1Loss', 'MSELoss', 'CharbonnierLoss', 'WeightedTVLoss', 'GANLoss', 'gradient_penalty_loss',
|
| 10 |
+
'r1_penalty', 'g_path_regularize'
|
| 11 |
+
]
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def build_loss(opt):
|
| 15 |
+
"""Build loss from options.
|
| 16 |
+
|
| 17 |
+
Args:
|
| 18 |
+
opt (dict): Configuration. It must contain:
|
| 19 |
+
type (str): Model type.
|
| 20 |
+
"""
|
| 21 |
+
opt = deepcopy(opt)
|
| 22 |
+
loss_type = opt.pop('type')
|
| 23 |
+
loss = LOSS_REGISTRY.get(loss_type)(**opt)
|
| 24 |
+
logger = get_root_logger()
|
| 25 |
+
logger.info(f'Loss [{loss.__class__.__name__}] is created.')
|
| 26 |
+
return loss
|
basicsr/losses/loss_util.py
ADDED
|
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import functools
|
| 2 |
+
from torch.nn import functional as F
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
def reduce_loss(loss, reduction):
|
| 6 |
+
"""Reduce loss as specified.
|
| 7 |
+
|
| 8 |
+
Args:
|
| 9 |
+
loss (Tensor): Elementwise loss tensor.
|
| 10 |
+
reduction (str): Options are 'none', 'mean' and 'sum'.
|
| 11 |
+
|
| 12 |
+
Returns:
|
| 13 |
+
Tensor: Reduced loss tensor.
|
| 14 |
+
"""
|
| 15 |
+
reduction_enum = F._Reduction.get_enum(reduction)
|
| 16 |
+
# none: 0, elementwise_mean:1, sum: 2
|
| 17 |
+
if reduction_enum == 0:
|
| 18 |
+
return loss
|
| 19 |
+
elif reduction_enum == 1:
|
| 20 |
+
return loss.mean()
|
| 21 |
+
else:
|
| 22 |
+
return loss.sum()
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def weight_reduce_loss(loss, weight=None, reduction='mean'):
|
| 26 |
+
"""Apply element-wise weight and reduce loss.
|
| 27 |
+
|
| 28 |
+
Args:
|
| 29 |
+
loss (Tensor): Element-wise loss.
|
| 30 |
+
weight (Tensor): Element-wise weights. Default: None.
|
| 31 |
+
reduction (str): Same as built-in losses of PyTorch. Options are
|
| 32 |
+
'none', 'mean' and 'sum'. Default: 'mean'.
|
| 33 |
+
|
| 34 |
+
Returns:
|
| 35 |
+
Tensor: Loss values.
|
| 36 |
+
"""
|
| 37 |
+
# if weight is specified, apply element-wise weight
|
| 38 |
+
if weight is not None:
|
| 39 |
+
assert weight.dim() == loss.dim()
|
| 40 |
+
assert weight.size(1) == 1 or weight.size(1) == loss.size(1)
|
| 41 |
+
loss = loss * weight
|
| 42 |
+
|
| 43 |
+
# if weight is not specified or reduction is sum, just reduce the loss
|
| 44 |
+
if weight is None or reduction == 'sum':
|
| 45 |
+
loss = reduce_loss(loss, reduction)
|
| 46 |
+
# if reduction is mean, then compute mean over weight region
|
| 47 |
+
elif reduction == 'mean':
|
| 48 |
+
if weight.size(1) > 1:
|
| 49 |
+
weight = weight.sum()
|
| 50 |
+
else:
|
| 51 |
+
weight = weight.sum() * loss.size(1)
|
| 52 |
+
loss = loss.sum() / weight
|
| 53 |
+
|
| 54 |
+
return loss
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def weighted_loss(loss_func):
|
| 58 |
+
"""Create a weighted version of a given loss function.
|
| 59 |
+
|
| 60 |
+
To use this decorator, the loss function must have the signature like
|
| 61 |
+
`loss_func(pred, target, **kwargs)`. The function only needs to compute
|
| 62 |
+
element-wise loss without any reduction. This decorator will add weight
|
| 63 |
+
and reduction arguments to the function. The decorated function will have
|
| 64 |
+
the signature like `loss_func(pred, target, weight=None, reduction='mean',
|
| 65 |
+
**kwargs)`.
|
| 66 |
+
|
| 67 |
+
:Example:
|
| 68 |
+
|
| 69 |
+
>>> import torch
|
| 70 |
+
>>> @weighted_loss
|
| 71 |
+
>>> def l1_loss(pred, target):
|
| 72 |
+
>>> return (pred - target).abs()
|
| 73 |
+
|
| 74 |
+
>>> pred = torch.Tensor([0, 2, 3])
|
| 75 |
+
>>> target = torch.Tensor([1, 1, 1])
|
| 76 |
+
>>> weight = torch.Tensor([1, 0, 1])
|
| 77 |
+
|
| 78 |
+
>>> l1_loss(pred, target)
|
| 79 |
+
tensor(1.3333)
|
| 80 |
+
>>> l1_loss(pred, target, weight)
|
| 81 |
+
tensor(1.5000)
|
| 82 |
+
>>> l1_loss(pred, target, reduction='none')
|
| 83 |
+
tensor([1., 1., 2.])
|
| 84 |
+
>>> l1_loss(pred, target, weight, reduction='sum')
|
| 85 |
+
tensor(3.)
|
| 86 |
+
"""
|
| 87 |
+
|
| 88 |
+
@functools.wraps(loss_func)
|
| 89 |
+
def wrapper(pred, target, weight=None, reduction='mean', **kwargs):
|
| 90 |
+
# get element-wise loss
|
| 91 |
+
loss = loss_func(pred, target, **kwargs)
|
| 92 |
+
loss = weight_reduce_loss(loss, weight, reduction)
|
| 93 |
+
return loss
|
| 94 |
+
|
| 95 |
+
return wrapper
|
basicsr/losses/losses.py
ADDED
|
@@ -0,0 +1,492 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
import torch
|
| 3 |
+
from torch import autograd as autograd
|
| 4 |
+
from torch import nn as nn
|
| 5 |
+
from torch.nn import functional as F
|
| 6 |
+
|
| 7 |
+
# from basicsr.archs.vgg_arch import VGGFeatureExtractor
|
| 8 |
+
from basicsr.utils.registry import LOSS_REGISTRY
|
| 9 |
+
from .loss_util import weighted_loss
|
| 10 |
+
|
| 11 |
+
_reduction_modes = ['none', 'mean', 'sum']
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
@weighted_loss
|
| 15 |
+
def l1_loss(pred, target):
|
| 16 |
+
return F.l1_loss(pred, target, reduction='none')
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
@weighted_loss
|
| 20 |
+
def mse_loss(pred, target):
|
| 21 |
+
return F.mse_loss(pred, target, reduction='none')
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
@weighted_loss
|
| 25 |
+
def charbonnier_loss(pred, target, eps=1e-12):
|
| 26 |
+
return torch.sqrt((pred - target)**2 + eps)
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
@LOSS_REGISTRY.register()
|
| 30 |
+
class L1Loss(nn.Module):
|
| 31 |
+
"""L1 (mean absolute error, MAE) loss.
|
| 32 |
+
|
| 33 |
+
Args:
|
| 34 |
+
loss_weight (float): Loss weight for L1 loss. Default: 1.0.
|
| 35 |
+
reduction (str): Specifies the reduction to apply to the output.
|
| 36 |
+
Supported choices are 'none' | 'mean' | 'sum'. Default: 'mean'.
|
| 37 |
+
"""
|
| 38 |
+
|
| 39 |
+
def __init__(self, loss_weight=1.0, reduction='mean'):
|
| 40 |
+
super(L1Loss, self).__init__()
|
| 41 |
+
if reduction not in ['none', 'mean', 'sum']:
|
| 42 |
+
raise ValueError(f'Unsupported reduction mode: {reduction}. Supported ones are: {_reduction_modes}')
|
| 43 |
+
|
| 44 |
+
self.loss_weight = loss_weight
|
| 45 |
+
self.reduction = reduction
|
| 46 |
+
|
| 47 |
+
def forward(self, pred, target, weight=None, **kwargs):
|
| 48 |
+
"""
|
| 49 |
+
Args:
|
| 50 |
+
pred (Tensor): of shape (N, C, H, W). Predicted tensor.
|
| 51 |
+
target (Tensor): of shape (N, C, H, W). Ground truth tensor.
|
| 52 |
+
weight (Tensor, optional): of shape (N, C, H, W). Element-wise weights. Default: None.
|
| 53 |
+
"""
|
| 54 |
+
return self.loss_weight * l1_loss(pred, target, weight, reduction=self.reduction)
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
@LOSS_REGISTRY.register()
|
| 58 |
+
class MSELoss(nn.Module):
|
| 59 |
+
"""MSE (L2) loss.
|
| 60 |
+
|
| 61 |
+
Args:
|
| 62 |
+
loss_weight (float): Loss weight for MSE loss. Default: 1.0.
|
| 63 |
+
reduction (str): Specifies the reduction to apply to the output.
|
| 64 |
+
Supported choices are 'none' | 'mean' | 'sum'. Default: 'mean'.
|
| 65 |
+
"""
|
| 66 |
+
|
| 67 |
+
def __init__(self, loss_weight=1.0, reduction='mean'):
|
| 68 |
+
super(MSELoss, self).__init__()
|
| 69 |
+
if reduction not in ['none', 'mean', 'sum']:
|
| 70 |
+
raise ValueError(f'Unsupported reduction mode: {reduction}. Supported ones are: {_reduction_modes}')
|
| 71 |
+
|
| 72 |
+
self.loss_weight = loss_weight
|
| 73 |
+
self.reduction = reduction
|
| 74 |
+
|
| 75 |
+
def forward(self, pred, target, weight=None, **kwargs):
|
| 76 |
+
"""
|
| 77 |
+
Args:
|
| 78 |
+
pred (Tensor): of shape (N, C, H, W). Predicted tensor.
|
| 79 |
+
target (Tensor): of shape (N, C, H, W). Ground truth tensor.
|
| 80 |
+
weight (Tensor, optional): of shape (N, C, H, W). Element-wise weights. Default: None.
|
| 81 |
+
"""
|
| 82 |
+
return self.loss_weight * mse_loss(pred, target, weight, reduction=self.reduction)
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
@LOSS_REGISTRY.register()
|
| 86 |
+
class CharbonnierLoss(nn.Module):
|
| 87 |
+
"""Charbonnier loss (one variant of Robust L1Loss, a differentiable
|
| 88 |
+
variant of L1Loss).
|
| 89 |
+
|
| 90 |
+
Described in "Deep Laplacian Pyramid Networks for Fast and Accurate
|
| 91 |
+
Super-Resolution".
|
| 92 |
+
|
| 93 |
+
Args:
|
| 94 |
+
loss_weight (float): Loss weight for L1 loss. Default: 1.0.
|
| 95 |
+
reduction (str): Specifies the reduction to apply to the output.
|
| 96 |
+
Supported choices are 'none' | 'mean' | 'sum'. Default: 'mean'.
|
| 97 |
+
eps (float): A value used to control the curvature near zero. Default: 1e-12.
|
| 98 |
+
"""
|
| 99 |
+
|
| 100 |
+
def __init__(self, loss_weight=1.0, reduction='mean', eps=1e-12):
|
| 101 |
+
super(CharbonnierLoss, self).__init__()
|
| 102 |
+
if reduction not in ['none', 'mean', 'sum']:
|
| 103 |
+
raise ValueError(f'Unsupported reduction mode: {reduction}. Supported ones are: {_reduction_modes}')
|
| 104 |
+
|
| 105 |
+
self.loss_weight = loss_weight
|
| 106 |
+
self.reduction = reduction
|
| 107 |
+
self.eps = eps
|
| 108 |
+
|
| 109 |
+
def forward(self, pred, target, weight=None, **kwargs):
|
| 110 |
+
"""
|
| 111 |
+
Args:
|
| 112 |
+
pred (Tensor): of shape (N, C, H, W). Predicted tensor.
|
| 113 |
+
target (Tensor): of shape (N, C, H, W). Ground truth tensor.
|
| 114 |
+
weight (Tensor, optional): of shape (N, C, H, W). Element-wise weights. Default: None.
|
| 115 |
+
"""
|
| 116 |
+
return self.loss_weight * charbonnier_loss(pred, target, weight, eps=self.eps, reduction=self.reduction)
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
@LOSS_REGISTRY.register()
|
| 120 |
+
class WeightedTVLoss(L1Loss):
|
| 121 |
+
"""Weighted TV loss.
|
| 122 |
+
|
| 123 |
+
Args:
|
| 124 |
+
loss_weight (float): Loss weight. Default: 1.0.
|
| 125 |
+
"""
|
| 126 |
+
|
| 127 |
+
def __init__(self, loss_weight=1.0, reduction='mean'):
|
| 128 |
+
if reduction not in ['mean', 'sum']:
|
| 129 |
+
raise ValueError(f'Unsupported reduction mode: {reduction}. Supported ones are: mean | sum')
|
| 130 |
+
super(WeightedTVLoss, self).__init__(loss_weight=loss_weight, reduction=reduction)
|
| 131 |
+
|
| 132 |
+
def forward(self, pred, weight=None):
|
| 133 |
+
if weight is None:
|
| 134 |
+
y_weight = None
|
| 135 |
+
x_weight = None
|
| 136 |
+
else:
|
| 137 |
+
y_weight = weight[:, :, :-1, :]
|
| 138 |
+
x_weight = weight[:, :, :, :-1]
|
| 139 |
+
|
| 140 |
+
y_diff = super().forward(pred[:, :, :-1, :], pred[:, :, 1:, :], weight=y_weight)
|
| 141 |
+
x_diff = super().forward(pred[:, :, :, :-1], pred[:, :, :, 1:], weight=x_weight)
|
| 142 |
+
|
| 143 |
+
loss = x_diff + y_diff
|
| 144 |
+
|
| 145 |
+
return loss
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
# @LOSS_REGISTRY.register()
|
| 149 |
+
# class PerceptualLoss(nn.Module):
|
| 150 |
+
# """Perceptual loss with commonly used style loss.
|
| 151 |
+
#
|
| 152 |
+
# Args:
|
| 153 |
+
# layer_weights (dict): The weight for each layer of vgg feature.
|
| 154 |
+
# Here is an example: {'conv5_4': 1.}, which means the conv5_4
|
| 155 |
+
# feature layer (before relu5_4) will be extracted with weight
|
| 156 |
+
# 1.0 in calculating losses.
|
| 157 |
+
# vgg_type (str): The type of vgg network used as feature extractor.
|
| 158 |
+
# Default: 'vgg19'.
|
| 159 |
+
# use_input_norm (bool): If True, normalize the input image in vgg.
|
| 160 |
+
# Default: True.
|
| 161 |
+
# range_norm (bool): If True, norm images with range [-1, 1] to [0, 1].
|
| 162 |
+
# Default: False.
|
| 163 |
+
# perceptual_weight (float): If `perceptual_weight > 0`, the perceptual
|
| 164 |
+
# loss will be calculated and the loss will multiplied by the
|
| 165 |
+
# weight. Default: 1.0.
|
| 166 |
+
# style_weight (float): If `style_weight > 0`, the style loss will be
|
| 167 |
+
# calculated and the loss will multiplied by the weight.
|
| 168 |
+
# Default: 0.
|
| 169 |
+
# criterion (str): Criterion used for perceptual loss. Default: 'l1'.
|
| 170 |
+
# """
|
| 171 |
+
#
|
| 172 |
+
# def __init__(self,
|
| 173 |
+
# layer_weights,
|
| 174 |
+
# vgg_type='vgg19',
|
| 175 |
+
# use_input_norm=True,
|
| 176 |
+
# range_norm=False,
|
| 177 |
+
# perceptual_weight=1.0,
|
| 178 |
+
# style_weight=0.,
|
| 179 |
+
# criterion='l1'):
|
| 180 |
+
# super(PerceptualLoss, self).__init__()
|
| 181 |
+
# self.perceptual_weight = perceptual_weight
|
| 182 |
+
# self.style_weight = style_weight
|
| 183 |
+
# self.layer_weights = layer_weights
|
| 184 |
+
# self.vgg = VGGFeatureExtractor(
|
| 185 |
+
# layer_name_list=list(layer_weights.keys()),
|
| 186 |
+
# vgg_type=vgg_type,
|
| 187 |
+
# use_input_norm=use_input_norm,
|
| 188 |
+
# range_norm=range_norm)
|
| 189 |
+
#
|
| 190 |
+
# self.criterion_type = criterion
|
| 191 |
+
# if self.criterion_type == 'l1':
|
| 192 |
+
# self.criterion = torch.nn.L1Loss()
|
| 193 |
+
# elif self.criterion_type == 'l2':
|
| 194 |
+
# self.criterion = torch.nn.L2loss()
|
| 195 |
+
# elif self.criterion_type == 'fro':
|
| 196 |
+
# self.criterion = None
|
| 197 |
+
# else:
|
| 198 |
+
# raise NotImplementedError(f'{criterion} criterion has not been supported.')
|
| 199 |
+
#
|
| 200 |
+
# def forward(self, x, gt):
|
| 201 |
+
# """Forward function.
|
| 202 |
+
#
|
| 203 |
+
# Args:
|
| 204 |
+
# x (Tensor): Input tensor with shape (n, c, h, w).
|
| 205 |
+
# gt (Tensor): Ground-truth tensor with shape (n, c, h, w).
|
| 206 |
+
#
|
| 207 |
+
# Returns:
|
| 208 |
+
# Tensor: Forward results.
|
| 209 |
+
# """
|
| 210 |
+
# # extract vgg features
|
| 211 |
+
# x_features = self.vgg(x)
|
| 212 |
+
# gt_features = self.vgg(gt.detach())
|
| 213 |
+
#
|
| 214 |
+
# # calculate perceptual loss
|
| 215 |
+
# if self.perceptual_weight > 0:
|
| 216 |
+
# percep_loss = 0
|
| 217 |
+
# for k in x_features.keys():
|
| 218 |
+
# if self.criterion_type == 'fro':
|
| 219 |
+
# percep_loss += torch.norm(x_features[k] - gt_features[k], p='fro') * self.layer_weights[k]
|
| 220 |
+
# else:
|
| 221 |
+
# percep_loss += self.criterion(x_features[k], gt_features[k]) * self.layer_weights[k]
|
| 222 |
+
# percep_loss *= self.perceptual_weight
|
| 223 |
+
# else:
|
| 224 |
+
# percep_loss = None
|
| 225 |
+
#
|
| 226 |
+
# # calculate style loss
|
| 227 |
+
# if self.style_weight > 0:
|
| 228 |
+
# style_loss = 0
|
| 229 |
+
# for k in x_features.keys():
|
| 230 |
+
# if self.criterion_type == 'fro':
|
| 231 |
+
# style_loss += torch.norm(
|
| 232 |
+
# self._gram_mat(x_features[k]) - self._gram_mat(gt_features[k]), p='fro') * self.layer_weights[k]
|
| 233 |
+
# else:
|
| 234 |
+
# style_loss += self.criterion(self._gram_mat(x_features[k]), self._gram_mat(
|
| 235 |
+
# gt_features[k])) * self.layer_weights[k]
|
| 236 |
+
# style_loss *= self.style_weight
|
| 237 |
+
# else:
|
| 238 |
+
# style_loss = None
|
| 239 |
+
#
|
| 240 |
+
# return percep_loss, style_loss
|
| 241 |
+
#
|
| 242 |
+
# def _gram_mat(self, x):
|
| 243 |
+
# """Calculate Gram matrix.
|
| 244 |
+
#
|
| 245 |
+
# Args:
|
| 246 |
+
# x (torch.Tensor): Tensor with shape of (n, c, h, w).
|
| 247 |
+
#
|
| 248 |
+
# Returns:
|
| 249 |
+
# torch.Tensor: Gram matrix.
|
| 250 |
+
# """
|
| 251 |
+
# n, c, h, w = x.size()
|
| 252 |
+
# features = x.view(n, c, w * h)
|
| 253 |
+
# features_t = features.transpose(1, 2)
|
| 254 |
+
# gram = features.bmm(features_t) / (c * h * w)
|
| 255 |
+
# return gram
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
@LOSS_REGISTRY.register()
|
| 259 |
+
class GANLoss(nn.Module):
|
| 260 |
+
"""Define GAN loss.
|
| 261 |
+
|
| 262 |
+
Args:
|
| 263 |
+
gan_type (str): Support 'vanilla', 'lsgan', 'wgan', 'hinge'.
|
| 264 |
+
real_label_val (float): The value for real label. Default: 1.0.
|
| 265 |
+
fake_label_val (float): The value for fake label. Default: 0.0.
|
| 266 |
+
loss_weight (float): Loss weight. Default: 1.0.
|
| 267 |
+
Note that loss_weight is only for generators; and it is always 1.0
|
| 268 |
+
for discriminators.
|
| 269 |
+
"""
|
| 270 |
+
|
| 271 |
+
def __init__(self, gan_type, real_label_val=1.0, fake_label_val=0.0, loss_weight=1.0):
|
| 272 |
+
super(GANLoss, self).__init__()
|
| 273 |
+
self.gan_type = gan_type
|
| 274 |
+
self.loss_weight = loss_weight
|
| 275 |
+
self.real_label_val = real_label_val
|
| 276 |
+
self.fake_label_val = fake_label_val
|
| 277 |
+
|
| 278 |
+
if self.gan_type == 'vanilla':
|
| 279 |
+
self.loss = nn.BCEWithLogitsLoss()
|
| 280 |
+
elif self.gan_type == 'lsgan':
|
| 281 |
+
self.loss = nn.MSELoss()
|
| 282 |
+
elif self.gan_type == 'wgan':
|
| 283 |
+
self.loss = self._wgan_loss
|
| 284 |
+
elif self.gan_type == 'wgan_softplus':
|
| 285 |
+
self.loss = self._wgan_softplus_loss
|
| 286 |
+
elif self.gan_type == 'hinge':
|
| 287 |
+
self.loss = nn.ReLU()
|
| 288 |
+
else:
|
| 289 |
+
raise NotImplementedError(f'GAN type {self.gan_type} is not implemented.')
|
| 290 |
+
|
| 291 |
+
def _wgan_loss(self, input, target):
|
| 292 |
+
"""wgan loss.
|
| 293 |
+
|
| 294 |
+
Args:
|
| 295 |
+
input (Tensor): Input tensor.
|
| 296 |
+
target (bool): Target label.
|
| 297 |
+
|
| 298 |
+
Returns:
|
| 299 |
+
Tensor: wgan loss.
|
| 300 |
+
"""
|
| 301 |
+
return -input.mean() if target else input.mean()
|
| 302 |
+
|
| 303 |
+
def _wgan_softplus_loss(self, input, target):
|
| 304 |
+
"""wgan loss with soft plus. softplus is a smooth approximation to the
|
| 305 |
+
ReLU function.
|
| 306 |
+
|
| 307 |
+
In StyleGAN2, it is called:
|
| 308 |
+
Logistic loss for discriminator;
|
| 309 |
+
Non-saturating loss for generator.
|
| 310 |
+
|
| 311 |
+
Args:
|
| 312 |
+
input (Tensor): Input tensor.
|
| 313 |
+
target (bool): Target label.
|
| 314 |
+
|
| 315 |
+
Returns:
|
| 316 |
+
Tensor: wgan loss.
|
| 317 |
+
"""
|
| 318 |
+
return F.softplus(-input).mean() if target else F.softplus(input).mean()
|
| 319 |
+
|
| 320 |
+
def get_target_label(self, input, target_is_real):
|
| 321 |
+
"""Get target label.
|
| 322 |
+
|
| 323 |
+
Args:
|
| 324 |
+
input (Tensor): Input tensor.
|
| 325 |
+
target_is_real (bool): Whether the target is real or fake.
|
| 326 |
+
|
| 327 |
+
Returns:
|
| 328 |
+
(bool | Tensor): Target tensor. Return bool for wgan, otherwise,
|
| 329 |
+
return Tensor.
|
| 330 |
+
"""
|
| 331 |
+
|
| 332 |
+
if self.gan_type in ['wgan', 'wgan_softplus']:
|
| 333 |
+
return target_is_real
|
| 334 |
+
target_val = (self.real_label_val if target_is_real else self.fake_label_val)
|
| 335 |
+
return input.new_ones(input.size()) * target_val
|
| 336 |
+
|
| 337 |
+
def forward(self, input, target_is_real, is_disc=False):
|
| 338 |
+
"""
|
| 339 |
+
Args:
|
| 340 |
+
input (Tensor): The input for the loss module, i.e., the network
|
| 341 |
+
prediction.
|
| 342 |
+
target_is_real (bool): Whether the targe is real or fake.
|
| 343 |
+
is_disc (bool): Whether the loss for discriminators or not.
|
| 344 |
+
Default: False.
|
| 345 |
+
|
| 346 |
+
Returns:
|
| 347 |
+
Tensor: GAN loss value.
|
| 348 |
+
"""
|
| 349 |
+
target_label = self.get_target_label(input, target_is_real)
|
| 350 |
+
if self.gan_type == 'hinge':
|
| 351 |
+
if is_disc: # for discriminators in hinge-gan
|
| 352 |
+
input = -input if target_is_real else input
|
| 353 |
+
loss = self.loss(1 + input).mean()
|
| 354 |
+
else: # for generators in hinge-gan
|
| 355 |
+
loss = -input.mean()
|
| 356 |
+
else: # other gan types
|
| 357 |
+
loss = self.loss(input, target_label)
|
| 358 |
+
|
| 359 |
+
# loss_weight is always 1.0 for discriminators
|
| 360 |
+
return loss if is_disc else loss * self.loss_weight
|
| 361 |
+
|
| 362 |
+
|
| 363 |
+
@LOSS_REGISTRY.register()
|
| 364 |
+
class MultiScaleGANLoss(GANLoss):
|
| 365 |
+
"""
|
| 366 |
+
MultiScaleGANLoss accepts a list of predictions
|
| 367 |
+
"""
|
| 368 |
+
|
| 369 |
+
def __init__(self, gan_type, real_label_val=1.0, fake_label_val=0.0, loss_weight=1.0):
|
| 370 |
+
super(MultiScaleGANLoss, self).__init__(gan_type, real_label_val, fake_label_val, loss_weight)
|
| 371 |
+
|
| 372 |
+
def forward(self, input, target_is_real, is_disc=False):
|
| 373 |
+
"""
|
| 374 |
+
The input is a list of tensors, or a list of (a list of tensors)
|
| 375 |
+
"""
|
| 376 |
+
if isinstance(input, list):
|
| 377 |
+
loss = 0
|
| 378 |
+
for pred_i in input:
|
| 379 |
+
if isinstance(pred_i, list):
|
| 380 |
+
# Only compute GAN loss for the last layer
|
| 381 |
+
# in case of multiscale feature matching
|
| 382 |
+
pred_i = pred_i[-1]
|
| 383 |
+
# Safe operation: 0-dim tensor calling self.mean() does nothing
|
| 384 |
+
loss_tensor = super().forward(pred_i, target_is_real, is_disc).mean()
|
| 385 |
+
loss += loss_tensor
|
| 386 |
+
return loss / len(input)
|
| 387 |
+
else:
|
| 388 |
+
return super().forward(input, target_is_real, is_disc)
|
| 389 |
+
|
| 390 |
+
|
| 391 |
+
def r1_penalty(real_pred, real_img):
|
| 392 |
+
"""R1 regularization for discriminator. The core idea is to
|
| 393 |
+
penalize the gradient on real data alone: when the
|
| 394 |
+
generator distribution produces the true data distribution
|
| 395 |
+
and the discriminator is equal to 0 on the data manifold, the
|
| 396 |
+
gradient penalty ensures that the discriminator cannot create
|
| 397 |
+
a non-zero gradient orthogonal to the data manifold without
|
| 398 |
+
suffering a loss in the GAN game.
|
| 399 |
+
|
| 400 |
+
Ref:
|
| 401 |
+
Eq. 9 in Which training methods for GANs do actually converge.
|
| 402 |
+
"""
|
| 403 |
+
grad_real = autograd.grad(outputs=real_pred.sum(), inputs=real_img, create_graph=True)[0]
|
| 404 |
+
grad_penalty = grad_real.pow(2).view(grad_real.shape[0], -1).sum(1).mean()
|
| 405 |
+
return grad_penalty
|
| 406 |
+
|
| 407 |
+
|
| 408 |
+
def g_path_regularize(fake_img, latents, mean_path_length, decay=0.01):
|
| 409 |
+
noise = torch.randn_like(fake_img) / math.sqrt(fake_img.shape[2] * fake_img.shape[3])
|
| 410 |
+
grad = autograd.grad(outputs=(fake_img * noise).sum(), inputs=latents, create_graph=True)[0]
|
| 411 |
+
path_lengths = torch.sqrt(grad.pow(2).sum(2).mean(1))
|
| 412 |
+
|
| 413 |
+
path_mean = mean_path_length + decay * (path_lengths.mean() - mean_path_length)
|
| 414 |
+
|
| 415 |
+
path_penalty = (path_lengths - path_mean).pow(2).mean()
|
| 416 |
+
|
| 417 |
+
return path_penalty, path_lengths.detach().mean(), path_mean.detach()
|
| 418 |
+
|
| 419 |
+
|
| 420 |
+
def gradient_penalty_loss(discriminator, real_data, fake_data, weight=None):
|
| 421 |
+
"""Calculate gradient penalty for wgan-gp.
|
| 422 |
+
|
| 423 |
+
Args:
|
| 424 |
+
discriminator (nn.Module): Network for the discriminator.
|
| 425 |
+
real_data (Tensor): Real input data.
|
| 426 |
+
fake_data (Tensor): Fake input data.
|
| 427 |
+
weight (Tensor): Weight tensor. Default: None.
|
| 428 |
+
|
| 429 |
+
Returns:
|
| 430 |
+
Tensor: A tensor for gradient penalty.
|
| 431 |
+
"""
|
| 432 |
+
|
| 433 |
+
batch_size = real_data.size(0)
|
| 434 |
+
alpha = real_data.new_tensor(torch.rand(batch_size, 1, 1, 1))
|
| 435 |
+
|
| 436 |
+
# interpolate between real_data and fake_data
|
| 437 |
+
interpolates = alpha * real_data + (1. - alpha) * fake_data
|
| 438 |
+
interpolates = autograd.Variable(interpolates, requires_grad=True)
|
| 439 |
+
|
| 440 |
+
disc_interpolates = discriminator(interpolates)
|
| 441 |
+
gradients = autograd.grad(
|
| 442 |
+
outputs=disc_interpolates,
|
| 443 |
+
inputs=interpolates,
|
| 444 |
+
grad_outputs=torch.ones_like(disc_interpolates),
|
| 445 |
+
create_graph=True,
|
| 446 |
+
retain_graph=True,
|
| 447 |
+
only_inputs=True)[0]
|
| 448 |
+
|
| 449 |
+
if weight is not None:
|
| 450 |
+
gradients = gradients * weight
|
| 451 |
+
|
| 452 |
+
gradients_penalty = ((gradients.norm(2, dim=1) - 1)**2).mean()
|
| 453 |
+
if weight is not None:
|
| 454 |
+
gradients_penalty /= torch.mean(weight)
|
| 455 |
+
|
| 456 |
+
return gradients_penalty
|
| 457 |
+
|
| 458 |
+
|
| 459 |
+
@LOSS_REGISTRY.register()
|
| 460 |
+
class GANFeatLoss(nn.Module):
|
| 461 |
+
"""Define feature matching loss for gans
|
| 462 |
+
|
| 463 |
+
Args:
|
| 464 |
+
criterion (str): Support 'l1', 'l2', 'charbonnier'.
|
| 465 |
+
loss_weight (float): Loss weight. Default: 1.0.
|
| 466 |
+
reduction (str): Specifies the reduction to apply to the output.
|
| 467 |
+
Supported choices are 'none' | 'mean' | 'sum'. Default: 'mean'.
|
| 468 |
+
"""
|
| 469 |
+
|
| 470 |
+
def __init__(self, criterion='l1', loss_weight=1.0, reduction='mean'):
|
| 471 |
+
super(GANFeatLoss, self).__init__()
|
| 472 |
+
if criterion == 'l1':
|
| 473 |
+
self.loss_op = L1Loss(loss_weight, reduction)
|
| 474 |
+
elif criterion == 'l2':
|
| 475 |
+
self.loss_op = MSELoss(loss_weight, reduction)
|
| 476 |
+
elif criterion == 'charbonnier':
|
| 477 |
+
self.loss_op = CharbonnierLoss(loss_weight, reduction)
|
| 478 |
+
else:
|
| 479 |
+
raise ValueError(f'Unsupported loss mode: {criterion}. Supported ones are: l1|l2|charbonnier')
|
| 480 |
+
|
| 481 |
+
self.loss_weight = loss_weight
|
| 482 |
+
|
| 483 |
+
def forward(self, pred_fake, pred_real):
|
| 484 |
+
num_d = len(pred_fake)
|
| 485 |
+
loss = 0
|
| 486 |
+
for i in range(num_d): # for each discriminator
|
| 487 |
+
# last output is the final prediction, exclude it
|
| 488 |
+
num_intermediate_outputs = len(pred_fake[i]) - 1
|
| 489 |
+
for j in range(num_intermediate_outputs): # for each layer output
|
| 490 |
+
unweighted_loss = self.loss_op(pred_fake[i][j], pred_real[i][j].detach())
|
| 491 |
+
loss += unweighted_loss / num_d
|
| 492 |
+
return loss * self.loss_weight
|
basicsr/metrics/__init__.py
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from copy import deepcopy
|
| 2 |
+
|
| 3 |
+
from basicsr.utils.registry import METRIC_REGISTRY
|
| 4 |
+
from .psnr_ssim import calculate_psnr, calculate_ssim
|
| 5 |
+
|
| 6 |
+
__all__ = ['calculate_psnr', 'calculate_ssim']
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def calculate_metric(data, opt):
|
| 10 |
+
"""Calculate metric from data and options.
|
| 11 |
+
|
| 12 |
+
Args:
|
| 13 |
+
opt (dict): Configuration. It must contain:
|
| 14 |
+
type (str): Model type.
|
| 15 |
+
"""
|
| 16 |
+
opt = deepcopy(opt)
|
| 17 |
+
metric_type = opt.pop('type')
|
| 18 |
+
metric = METRIC_REGISTRY.get(metric_type)(**data, **opt)
|
| 19 |
+
return metric
|
basicsr/metrics/metric_util.py
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
|
| 3 |
+
from basicsr.utils.matlab_functions import bgr2ycbcr
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def reorder_image(img, input_order='HWC'):
|
| 7 |
+
"""Reorder images to 'HWC' order.
|
| 8 |
+
|
| 9 |
+
If the input_order is (h, w), return (h, w, 1);
|
| 10 |
+
If the input_order is (c, h, w), return (h, w, c);
|
| 11 |
+
If the input_order is (h, w, c), return as it is.
|
| 12 |
+
|
| 13 |
+
Args:
|
| 14 |
+
img (ndarray): Input image.
|
| 15 |
+
input_order (str): Whether the input order is 'HWC' or 'CHW'.
|
| 16 |
+
If the input image shape is (h, w), input_order will not have
|
| 17 |
+
effects. Default: 'HWC'.
|
| 18 |
+
|
| 19 |
+
Returns:
|
| 20 |
+
ndarray: reordered image.
|
| 21 |
+
"""
|
| 22 |
+
|
| 23 |
+
if input_order not in ['HWC', 'CHW']:
|
| 24 |
+
raise ValueError(f"Wrong input_order {input_order}. Supported input_orders are 'HWC' and 'CHW'")
|
| 25 |
+
if len(img.shape) == 2:
|
| 26 |
+
img = img[..., None]
|
| 27 |
+
if input_order == 'CHW':
|
| 28 |
+
img = img.transpose(1, 2, 0)
|
| 29 |
+
return img
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def to_y_channel(img):
|
| 33 |
+
"""Change to Y channel of YCbCr.
|
| 34 |
+
|
| 35 |
+
Args:
|
| 36 |
+
img (ndarray): Images with range [0, 255].
|
| 37 |
+
|
| 38 |
+
Returns:
|
| 39 |
+
(ndarray): Images with range [0, 255] (float type) without round.
|
| 40 |
+
"""
|
| 41 |
+
img = img.astype(np.float32) / 255.
|
| 42 |
+
if img.ndim == 3 and img.shape[2] == 3:
|
| 43 |
+
img = bgr2ycbcr(img, y_only=True)
|
| 44 |
+
img = img[..., None]
|
| 45 |
+
return img * 255.
|
basicsr/metrics/psnr_ssim.py
ADDED
|
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import cv2
|
| 2 |
+
import numpy as np
|
| 3 |
+
|
| 4 |
+
from basicsr.metrics.metric_util import reorder_image, to_y_channel
|
| 5 |
+
from basicsr.utils.registry import METRIC_REGISTRY
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
@METRIC_REGISTRY.register()
|
| 9 |
+
def calculate_psnr(img, img2, crop_border, input_order='HWC', test_y_channel=False, **kwargs):
|
| 10 |
+
"""Calculate PSNR (Peak Signal-to-Noise Ratio).
|
| 11 |
+
|
| 12 |
+
Ref: https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio
|
| 13 |
+
|
| 14 |
+
Args:
|
| 15 |
+
img (ndarray): Images with range [0, 255].
|
| 16 |
+
img2 (ndarray): Images with range [0, 255].
|
| 17 |
+
crop_border (int): Cropped pixels in each edge of an image. These
|
| 18 |
+
pixels are not involved in the PSNR calculation.
|
| 19 |
+
input_order (str): Whether the input order is 'HWC' or 'CHW'.
|
| 20 |
+
Default: 'HWC'.
|
| 21 |
+
test_y_channel (bool): Test on Y channel of YCbCr. Default: False.
|
| 22 |
+
|
| 23 |
+
Returns:
|
| 24 |
+
float: psnr result.
|
| 25 |
+
"""
|
| 26 |
+
|
| 27 |
+
assert img.shape == img2.shape, (f'Image shapes are different: {img.shape}, {img2.shape}.')
|
| 28 |
+
if input_order not in ['HWC', 'CHW']:
|
| 29 |
+
raise ValueError(f'Wrong input_order {input_order}. Supported input_orders are "HWC" and "CHW"')
|
| 30 |
+
img = reorder_image(img, input_order=input_order)
|
| 31 |
+
img2 = reorder_image(img2, input_order=input_order)
|
| 32 |
+
img = img.astype(np.float64)
|
| 33 |
+
img2 = img2.astype(np.float64)
|
| 34 |
+
|
| 35 |
+
if crop_border != 0:
|
| 36 |
+
img = img[crop_border:-crop_border, crop_border:-crop_border, ...]
|
| 37 |
+
img2 = img2[crop_border:-crop_border, crop_border:-crop_border, ...]
|
| 38 |
+
|
| 39 |
+
if test_y_channel:
|
| 40 |
+
img = to_y_channel(img)
|
| 41 |
+
img2 = to_y_channel(img2)
|
| 42 |
+
|
| 43 |
+
mse = np.mean((img - img2)**2)
|
| 44 |
+
if mse == 0:
|
| 45 |
+
return float('inf')
|
| 46 |
+
return 20. * np.log10(255. / np.sqrt(mse))
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def _ssim(img, img2):
|
| 50 |
+
"""Calculate SSIM (structural similarity) for one channel images.
|
| 51 |
+
|
| 52 |
+
It is called by func:`calculate_ssim`.
|
| 53 |
+
|
| 54 |
+
Args:
|
| 55 |
+
img (ndarray): Images with range [0, 255] with order 'HWC'.
|
| 56 |
+
img2 (ndarray): Images with range [0, 255] with order 'HWC'.
|
| 57 |
+
|
| 58 |
+
Returns:
|
| 59 |
+
float: ssim result.
|
| 60 |
+
"""
|
| 61 |
+
|
| 62 |
+
c1 = (0.01 * 255)**2
|
| 63 |
+
c2 = (0.03 * 255)**2
|
| 64 |
+
|
| 65 |
+
img = img.astype(np.float64)
|
| 66 |
+
img2 = img2.astype(np.float64)
|
| 67 |
+
kernel = cv2.getGaussianKernel(11, 1.5)
|
| 68 |
+
window = np.outer(kernel, kernel.transpose())
|
| 69 |
+
|
| 70 |
+
mu1 = cv2.filter2D(img, -1, window)[5:-5, 5:-5]
|
| 71 |
+
mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
|
| 72 |
+
mu1_sq = mu1**2
|
| 73 |
+
mu2_sq = mu2**2
|
| 74 |
+
mu1_mu2 = mu1 * mu2
|
| 75 |
+
sigma1_sq = cv2.filter2D(img**2, -1, window)[5:-5, 5:-5] - mu1_sq
|
| 76 |
+
sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq
|
| 77 |
+
sigma12 = cv2.filter2D(img * img2, -1, window)[5:-5, 5:-5] - mu1_mu2
|
| 78 |
+
|
| 79 |
+
ssim_map = ((2 * mu1_mu2 + c1) * (2 * sigma12 + c2)) / ((mu1_sq + mu2_sq + c1) * (sigma1_sq + sigma2_sq + c2))
|
| 80 |
+
return ssim_map.mean()
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
@METRIC_REGISTRY.register()
|
| 84 |
+
def calculate_ssim(img, img2, crop_border, input_order='HWC', test_y_channel=False, **kwargs):
|
| 85 |
+
"""Calculate SSIM (structural similarity).
|
| 86 |
+
|
| 87 |
+
Ref:
|
| 88 |
+
Image quality assessment: From error visibility to structural similarity
|
| 89 |
+
|
| 90 |
+
The results are the same as that of the official released MATLAB code in
|
| 91 |
+
https://ece.uwaterloo.ca/~z70wang/research/ssim/.
|
| 92 |
+
|
| 93 |
+
For three-channel images, SSIM is calculated for each channel and then
|
| 94 |
+
averaged.
|
| 95 |
+
|
| 96 |
+
Args:
|
| 97 |
+
img (ndarray): Images with range [0, 255].
|
| 98 |
+
img2 (ndarray): Images with range [0, 255].
|
| 99 |
+
crop_border (int): Cropped pixels in each edge of an image. These
|
| 100 |
+
pixels are not involved in the SSIM calculation.
|
| 101 |
+
input_order (str): Whether the input order is 'HWC' or 'CHW'.
|
| 102 |
+
Default: 'HWC'.
|
| 103 |
+
test_y_channel (bool): Test on Y channel of YCbCr. Default: False.
|
| 104 |
+
|
| 105 |
+
Returns:
|
| 106 |
+
float: ssim result.
|
| 107 |
+
"""
|
| 108 |
+
|
| 109 |
+
assert img.shape == img2.shape, (f'Image shapes are different: {img.shape}, {img2.shape}.')
|
| 110 |
+
if input_order not in ['HWC', 'CHW']:
|
| 111 |
+
raise ValueError(f'Wrong input_order {input_order}. Supported input_orders are "HWC" and "CHW"')
|
| 112 |
+
img = reorder_image(img, input_order=input_order)
|
| 113 |
+
img2 = reorder_image(img2, input_order=input_order)
|
| 114 |
+
img = img.astype(np.float64)
|
| 115 |
+
img2 = img2.astype(np.float64)
|
| 116 |
+
|
| 117 |
+
if crop_border != 0:
|
| 118 |
+
img = img[crop_border:-crop_border, crop_border:-crop_border, ...]
|
| 119 |
+
img2 = img2[crop_border:-crop_border, crop_border:-crop_border, ...]
|
| 120 |
+
|
| 121 |
+
if test_y_channel:
|
| 122 |
+
img = to_y_channel(img)
|
| 123 |
+
img2 = to_y_channel(img2)
|
| 124 |
+
|
| 125 |
+
ssims = []
|
| 126 |
+
for i in range(img.shape[2]):
|
| 127 |
+
ssims.append(_ssim(img[..., i], img2[..., i]))
|
| 128 |
+
return np.array(ssims).mean()
|
basicsr/models/__init__.py
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import importlib
|
| 2 |
+
from copy import deepcopy
|
| 3 |
+
from os import path as osp
|
| 4 |
+
|
| 5 |
+
from basicsr.utils import get_root_logger, scandir
|
| 6 |
+
from basicsr.utils.registry import MODEL_REGISTRY
|
| 7 |
+
|
| 8 |
+
__all__ = ['build_model']
|
| 9 |
+
|
| 10 |
+
# automatically scan and import model modules for registry
|
| 11 |
+
# scan all the files under the 'models' folder and collect files ending with
|
| 12 |
+
# '_model.py'
|
| 13 |
+
model_folder = osp.dirname(osp.abspath(__file__))
|
| 14 |
+
model_filenames = [osp.splitext(osp.basename(v))[0] for v in scandir(model_folder) if v.endswith('_model.py')]
|
| 15 |
+
# import all the model modules
|
| 16 |
+
_model_modules = [importlib.import_module(f'basicsr.models.{file_name}') for file_name in model_filenames]
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def build_model(opt):
|
| 20 |
+
"""Build model from options.
|
| 21 |
+
|
| 22 |
+
Args:
|
| 23 |
+
opt (dict): Configuration. It must contain:
|
| 24 |
+
model_type (str): Model type.
|
| 25 |
+
"""
|
| 26 |
+
opt = deepcopy(opt)
|
| 27 |
+
model = MODEL_REGISTRY.get(opt['model_type'])(opt)
|
| 28 |
+
logger = get_root_logger()
|
| 29 |
+
logger.info(f'Model [{model.__class__.__name__}] is created.')
|
| 30 |
+
return model
|
basicsr/models/base_model.py
ADDED
|
@@ -0,0 +1,380 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import time
|
| 3 |
+
import torch
|
| 4 |
+
from collections import OrderedDict
|
| 5 |
+
from copy import deepcopy
|
| 6 |
+
from torch.nn.parallel import DataParallel, DistributedDataParallel
|
| 7 |
+
|
| 8 |
+
from basicsr.models import lr_scheduler as lr_scheduler
|
| 9 |
+
from basicsr.utils import get_root_logger
|
| 10 |
+
from basicsr.utils.dist_util import master_only
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class BaseModel():
|
| 14 |
+
"""Base model."""
|
| 15 |
+
|
| 16 |
+
def __init__(self, opt):
|
| 17 |
+
self.opt = opt
|
| 18 |
+
self.device = torch.device('cuda' if opt['num_gpu'] != 0 else 'cpu')
|
| 19 |
+
self.is_train = opt['is_train']
|
| 20 |
+
self.schedulers = []
|
| 21 |
+
self.optimizers = []
|
| 22 |
+
|
| 23 |
+
def feed_data(self, data):
|
| 24 |
+
pass
|
| 25 |
+
|
| 26 |
+
def optimize_parameters(self):
|
| 27 |
+
pass
|
| 28 |
+
|
| 29 |
+
def get_current_visuals(self):
|
| 30 |
+
pass
|
| 31 |
+
|
| 32 |
+
def save(self, epoch, current_iter):
|
| 33 |
+
"""Save networks and training state."""
|
| 34 |
+
pass
|
| 35 |
+
|
| 36 |
+
def validation(self, dataloader, current_iter, tb_logger, save_img=False):
|
| 37 |
+
"""Validation function.
|
| 38 |
+
|
| 39 |
+
Args:
|
| 40 |
+
dataloader (torch.utils.data.DataLoader): Validation dataloader.
|
| 41 |
+
current_iter (int): Current iteration.
|
| 42 |
+
tb_logger (tensorboard logger): Tensorboard logger.
|
| 43 |
+
save_img (bool): Whether to save images. Default: False.
|
| 44 |
+
"""
|
| 45 |
+
if self.opt['dist']:
|
| 46 |
+
self.dist_validation(dataloader, current_iter, tb_logger, save_img)
|
| 47 |
+
else:
|
| 48 |
+
self.nondist_validation(dataloader, current_iter, tb_logger, save_img)
|
| 49 |
+
|
| 50 |
+
def _initialize_best_metric_results(self, dataset_name):
|
| 51 |
+
"""Initialize the best metric results dict for recording the best metric value and iteration."""
|
| 52 |
+
if hasattr(self, 'best_metric_results') and dataset_name in self.best_metric_results:
|
| 53 |
+
return
|
| 54 |
+
elif not hasattr(self, 'best_metric_results'):
|
| 55 |
+
self.best_metric_results = dict()
|
| 56 |
+
|
| 57 |
+
# add a dataset record
|
| 58 |
+
record = dict()
|
| 59 |
+
for metric, content in self.opt['val']['metrics'].items():
|
| 60 |
+
better = content.get('better', 'higher')
|
| 61 |
+
init_val = float('-inf') if better == 'higher' else float('inf')
|
| 62 |
+
record[metric] = dict(better=better, val=init_val, iter=-1)
|
| 63 |
+
self.best_metric_results[dataset_name] = record
|
| 64 |
+
|
| 65 |
+
def _update_best_metric_result(self, dataset_name, metric, val, current_iter):
|
| 66 |
+
if self.best_metric_results[dataset_name][metric]['better'] == 'higher':
|
| 67 |
+
if val >= self.best_metric_results[dataset_name][metric]['val']:
|
| 68 |
+
self.best_metric_results[dataset_name][metric]['val'] = val
|
| 69 |
+
self.best_metric_results[dataset_name][metric]['iter'] = current_iter
|
| 70 |
+
else:
|
| 71 |
+
if val <= self.best_metric_results[dataset_name][metric]['val']:
|
| 72 |
+
self.best_metric_results[dataset_name][metric]['val'] = val
|
| 73 |
+
self.best_metric_results[dataset_name][metric]['iter'] = current_iter
|
| 74 |
+
|
| 75 |
+
def model_ema(self, decay=0.999):
|
| 76 |
+
net_g = self.get_bare_model(self.net_g)
|
| 77 |
+
|
| 78 |
+
net_g_params = dict(net_g.named_parameters())
|
| 79 |
+
net_g_ema_params = dict(self.net_g_ema.named_parameters())
|
| 80 |
+
|
| 81 |
+
for k in net_g_ema_params.keys():
|
| 82 |
+
net_g_ema_params[k].data.mul_(decay).add_(net_g_params[k].data, alpha=1 - decay)
|
| 83 |
+
|
| 84 |
+
def get_current_log(self):
|
| 85 |
+
return self.log_dict
|
| 86 |
+
|
| 87 |
+
def model_to_device(self, net):
|
| 88 |
+
"""Model to device. It also warps models with DistributedDataParallel
|
| 89 |
+
or DataParallel.
|
| 90 |
+
|
| 91 |
+
Args:
|
| 92 |
+
net (nn.Module)
|
| 93 |
+
"""
|
| 94 |
+
net = net.to(self.device)
|
| 95 |
+
if self.opt['dist']:
|
| 96 |
+
find_unused_parameters = self.opt.get('find_unused_parameters', False)
|
| 97 |
+
net = DistributedDataParallel(
|
| 98 |
+
net, device_ids=[torch.cuda.current_device()], find_unused_parameters=find_unused_parameters)
|
| 99 |
+
elif self.opt['num_gpu'] > 1:
|
| 100 |
+
net = DataParallel(net)
|
| 101 |
+
return net
|
| 102 |
+
|
| 103 |
+
def get_optimizer(self, optim_type, params, lr, **kwargs):
|
| 104 |
+
if optim_type == 'Adam':
|
| 105 |
+
optimizer = torch.optim.Adam(params, lr, **kwargs)
|
| 106 |
+
else:
|
| 107 |
+
raise NotImplementedError(f'optimizer {optim_type} is not supperted yet.')
|
| 108 |
+
return optimizer
|
| 109 |
+
|
| 110 |
+
def setup_schedulers(self):
|
| 111 |
+
"""Set up schedulers."""
|
| 112 |
+
train_opt = self.opt['train']
|
| 113 |
+
scheduler_type = train_opt['scheduler'].pop('type')
|
| 114 |
+
if scheduler_type in ['MultiStepLR', 'MultiStepRestartLR']:
|
| 115 |
+
for optimizer in self.optimizers:
|
| 116 |
+
self.schedulers.append(lr_scheduler.MultiStepRestartLR(optimizer, **train_opt['scheduler']))
|
| 117 |
+
elif scheduler_type == 'CosineAnnealingRestartLR':
|
| 118 |
+
for optimizer in self.optimizers:
|
| 119 |
+
self.schedulers.append(lr_scheduler.CosineAnnealingRestartLR(optimizer, **train_opt['scheduler']))
|
| 120 |
+
else:
|
| 121 |
+
raise NotImplementedError(f'Scheduler {scheduler_type} is not implemented yet.')
|
| 122 |
+
|
| 123 |
+
def get_bare_model(self, net):
|
| 124 |
+
"""Get bare model, especially under wrapping with
|
| 125 |
+
DistributedDataParallel or DataParallel.
|
| 126 |
+
"""
|
| 127 |
+
if isinstance(net, (DataParallel, DistributedDataParallel)):
|
| 128 |
+
net = net.module
|
| 129 |
+
return net
|
| 130 |
+
|
| 131 |
+
@master_only
|
| 132 |
+
def print_network(self, net):
|
| 133 |
+
"""Print the str and parameter number of a network.
|
| 134 |
+
|
| 135 |
+
Args:
|
| 136 |
+
net (nn.Module)
|
| 137 |
+
"""
|
| 138 |
+
if isinstance(net, (DataParallel, DistributedDataParallel)):
|
| 139 |
+
net_cls_str = f'{net.__class__.__name__} - {net.module.__class__.__name__}'
|
| 140 |
+
else:
|
| 141 |
+
net_cls_str = f'{net.__class__.__name__}'
|
| 142 |
+
|
| 143 |
+
net = self.get_bare_model(net)
|
| 144 |
+
net_str = str(net)
|
| 145 |
+
net_params = sum(map(lambda x: x.numel(), net.parameters()))
|
| 146 |
+
|
| 147 |
+
logger = get_root_logger()
|
| 148 |
+
logger.info(f'Network: {net_cls_str}, with parameters: {net_params:,d}')
|
| 149 |
+
logger.info(net_str)
|
| 150 |
+
|
| 151 |
+
def _set_lr(self, lr_groups_l):
|
| 152 |
+
"""Set learning rate for warmup.
|
| 153 |
+
|
| 154 |
+
Args:
|
| 155 |
+
lr_groups_l (list): List for lr_groups, each for an optimizer.
|
| 156 |
+
"""
|
| 157 |
+
for optimizer, lr_groups in zip(self.optimizers, lr_groups_l):
|
| 158 |
+
for param_group, lr in zip(optimizer.param_groups, lr_groups):
|
| 159 |
+
param_group['lr'] = lr
|
| 160 |
+
|
| 161 |
+
def _get_init_lr(self):
|
| 162 |
+
"""Get the initial lr, which is set by the scheduler.
|
| 163 |
+
"""
|
| 164 |
+
init_lr_groups_l = []
|
| 165 |
+
for optimizer in self.optimizers:
|
| 166 |
+
init_lr_groups_l.append([v['initial_lr'] for v in optimizer.param_groups])
|
| 167 |
+
return init_lr_groups_l
|
| 168 |
+
|
| 169 |
+
def update_learning_rate(self, current_iter, warmup_iter=-1):
|
| 170 |
+
"""Update learning rate.
|
| 171 |
+
|
| 172 |
+
Args:
|
| 173 |
+
current_iter (int): Current iteration.
|
| 174 |
+
warmup_iter (int): Warmup iter numbers. -1 for no warmup.
|
| 175 |
+
Default: -1.
|
| 176 |
+
"""
|
| 177 |
+
if current_iter > 1:
|
| 178 |
+
for scheduler in self.schedulers:
|
| 179 |
+
scheduler.step()
|
| 180 |
+
# set up warm-up learning rate
|
| 181 |
+
if current_iter < warmup_iter:
|
| 182 |
+
# get initial lr for each group
|
| 183 |
+
init_lr_g_l = self._get_init_lr()
|
| 184 |
+
# modify warming-up learning rates
|
| 185 |
+
# currently only support linearly warm up
|
| 186 |
+
warm_up_lr_l = []
|
| 187 |
+
for init_lr_g in init_lr_g_l:
|
| 188 |
+
warm_up_lr_l.append([v / warmup_iter * current_iter for v in init_lr_g])
|
| 189 |
+
# set learning rate
|
| 190 |
+
self._set_lr(warm_up_lr_l)
|
| 191 |
+
|
| 192 |
+
def get_current_learning_rate(self):
|
| 193 |
+
return [param_group['lr'] for param_group in self.optimizers[0].param_groups]
|
| 194 |
+
|
| 195 |
+
@master_only
|
| 196 |
+
def save_network(self, net, net_label, current_iter, param_key='params'):
|
| 197 |
+
"""Save networks.
|
| 198 |
+
|
| 199 |
+
Args:
|
| 200 |
+
net (nn.Module | list[nn.Module]): Network(s) to be saved.
|
| 201 |
+
net_label (str): Network label.
|
| 202 |
+
current_iter (int): Current iter number.
|
| 203 |
+
param_key (str | list[str]): The parameter key(s) to save network.
|
| 204 |
+
Default: 'params'.
|
| 205 |
+
"""
|
| 206 |
+
if current_iter == -1:
|
| 207 |
+
current_iter = 'latest'
|
| 208 |
+
save_filename = f'{net_label}_{current_iter}.pth'
|
| 209 |
+
save_path = os.path.join(self.opt['path']['models'], save_filename)
|
| 210 |
+
|
| 211 |
+
net = net if isinstance(net, list) else [net]
|
| 212 |
+
param_key = param_key if isinstance(param_key, list) else [param_key]
|
| 213 |
+
assert len(net) == len(param_key), 'The lengths of net and param_key should be the same.'
|
| 214 |
+
|
| 215 |
+
save_dict = {}
|
| 216 |
+
for net_, param_key_ in zip(net, param_key):
|
| 217 |
+
net_ = self.get_bare_model(net_)
|
| 218 |
+
state_dict = net_.state_dict()
|
| 219 |
+
for key, param in state_dict.items():
|
| 220 |
+
if key.startswith('module.'): # remove unnecessary 'module.'
|
| 221 |
+
key = key[7:]
|
| 222 |
+
state_dict[key] = param.cpu()
|
| 223 |
+
save_dict[param_key_] = state_dict
|
| 224 |
+
|
| 225 |
+
# avoid occasional writing errors
|
| 226 |
+
retry = 3
|
| 227 |
+
while retry > 0:
|
| 228 |
+
try:
|
| 229 |
+
torch.save(save_dict, save_path)
|
| 230 |
+
except Exception as e:
|
| 231 |
+
logger = get_root_logger()
|
| 232 |
+
logger.warning(f'Save model error: {e}, remaining retry times: {retry - 1}')
|
| 233 |
+
time.sleep(1)
|
| 234 |
+
else:
|
| 235 |
+
break
|
| 236 |
+
finally:
|
| 237 |
+
retry -= 1
|
| 238 |
+
if retry == 0:
|
| 239 |
+
logger.warning(f'Still cannot save {save_path}. Just ignore it.')
|
| 240 |
+
# raise IOError(f'Cannot save {save_path}.')
|
| 241 |
+
|
| 242 |
+
def _print_different_keys_loading(self, crt_net, load_net, strict=True):
|
| 243 |
+
"""Print keys with different name or different size when loading models.
|
| 244 |
+
|
| 245 |
+
1. Print keys with different names.
|
| 246 |
+
2. If strict=False, print the same key but with different tensor size.
|
| 247 |
+
It also ignore these keys with different sizes (not load).
|
| 248 |
+
|
| 249 |
+
Args:
|
| 250 |
+
crt_net (torch model): Current network.
|
| 251 |
+
load_net (dict): Loaded network.
|
| 252 |
+
strict (bool): Whether strictly loaded. Default: True.
|
| 253 |
+
"""
|
| 254 |
+
crt_net = self.get_bare_model(crt_net)
|
| 255 |
+
crt_net = crt_net.state_dict()
|
| 256 |
+
crt_net_keys = set(crt_net.keys())
|
| 257 |
+
load_net_keys = set(load_net.keys())
|
| 258 |
+
|
| 259 |
+
logger = get_root_logger()
|
| 260 |
+
if crt_net_keys != load_net_keys:
|
| 261 |
+
logger.warning('Current net - loaded net:')
|
| 262 |
+
for v in sorted(list(crt_net_keys - load_net_keys)):
|
| 263 |
+
logger.warning(f' {v}')
|
| 264 |
+
logger.warning('Loaded net - current net:')
|
| 265 |
+
for v in sorted(list(load_net_keys - crt_net_keys)):
|
| 266 |
+
logger.warning(f' {v}')
|
| 267 |
+
|
| 268 |
+
# check the size for the same keys
|
| 269 |
+
if not strict:
|
| 270 |
+
common_keys = crt_net_keys & load_net_keys
|
| 271 |
+
for k in common_keys:
|
| 272 |
+
if crt_net[k].size() != load_net[k].size():
|
| 273 |
+
logger.warning(f'Size different, ignore [{k}]: crt_net: '
|
| 274 |
+
f'{crt_net[k].shape}; load_net: {load_net[k].shape}')
|
| 275 |
+
load_net[k + '.ignore'] = load_net.pop(k)
|
| 276 |
+
|
| 277 |
+
def load_network(self, net, load_path, strict=True, param_key='params'):
|
| 278 |
+
"""Load network.
|
| 279 |
+
|
| 280 |
+
Args:
|
| 281 |
+
load_path (str): The path of networks to be loaded.
|
| 282 |
+
net (nn.Module): Network.
|
| 283 |
+
strict (bool): Whether strictly loaded.
|
| 284 |
+
param_key (str): The parameter key of loaded network. If set to
|
| 285 |
+
None, use the root 'path'.
|
| 286 |
+
Default: 'params'.
|
| 287 |
+
"""
|
| 288 |
+
logger = get_root_logger()
|
| 289 |
+
net = self.get_bare_model(net)
|
| 290 |
+
load_net = torch.load(load_path, map_location=lambda storage, loc: storage)
|
| 291 |
+
if param_key is not None:
|
| 292 |
+
if param_key not in load_net and 'params' in load_net:
|
| 293 |
+
param_key = 'params'
|
| 294 |
+
logger.info('Loading: params_ema does not exist, use params.')
|
| 295 |
+
load_net = load_net[param_key]
|
| 296 |
+
logger.info(f'Loading {net.__class__.__name__} model from {load_path}, with param key: [{param_key}].')
|
| 297 |
+
# remove unnecessary 'module.'
|
| 298 |
+
for k, v in deepcopy(load_net).items():
|
| 299 |
+
if k.startswith('module.'):
|
| 300 |
+
load_net[k[7:]] = v
|
| 301 |
+
load_net.pop(k)
|
| 302 |
+
self._print_different_keys_loading(net, load_net, strict)
|
| 303 |
+
net.load_state_dict(load_net, strict=strict)
|
| 304 |
+
|
| 305 |
+
@master_only
|
| 306 |
+
def save_training_state(self, epoch, current_iter):
|
| 307 |
+
"""Save training states during training, which will be used for
|
| 308 |
+
resuming.
|
| 309 |
+
|
| 310 |
+
Args:
|
| 311 |
+
epoch (int): Current epoch.
|
| 312 |
+
current_iter (int): Current iteration.
|
| 313 |
+
"""
|
| 314 |
+
if current_iter != -1:
|
| 315 |
+
state = {'epoch': epoch, 'iter': current_iter, 'optimizers': [], 'schedulers': []}
|
| 316 |
+
for o in self.optimizers:
|
| 317 |
+
state['optimizers'].append(o.state_dict())
|
| 318 |
+
for s in self.schedulers:
|
| 319 |
+
state['schedulers'].append(s.state_dict())
|
| 320 |
+
save_filename = f'{current_iter}.state'
|
| 321 |
+
save_path = os.path.join(self.opt['path']['training_states'], save_filename)
|
| 322 |
+
|
| 323 |
+
# avoid occasional writing errors
|
| 324 |
+
retry = 3
|
| 325 |
+
while retry > 0:
|
| 326 |
+
try:
|
| 327 |
+
torch.save(state, save_path)
|
| 328 |
+
except Exception as e:
|
| 329 |
+
logger = get_root_logger()
|
| 330 |
+
logger.warning(f'Save training state error: {e}, remaining retry times: {retry - 1}')
|
| 331 |
+
time.sleep(1)
|
| 332 |
+
else:
|
| 333 |
+
break
|
| 334 |
+
finally:
|
| 335 |
+
retry -= 1
|
| 336 |
+
if retry == 0:
|
| 337 |
+
logger.warning(f'Still cannot save {save_path}. Just ignore it.')
|
| 338 |
+
# raise IOError(f'Cannot save {save_path}.')
|
| 339 |
+
|
| 340 |
+
def resume_training(self, resume_state):
|
| 341 |
+
"""Reload the optimizers and schedulers for resumed training.
|
| 342 |
+
|
| 343 |
+
Args:
|
| 344 |
+
resume_state (dict): Resume state.
|
| 345 |
+
"""
|
| 346 |
+
resume_optimizers = resume_state['optimizers']
|
| 347 |
+
resume_schedulers = resume_state['schedulers']
|
| 348 |
+
assert len(resume_optimizers) == len(self.optimizers), 'Wrong lengths of optimizers'
|
| 349 |
+
assert len(resume_schedulers) == len(self.schedulers), 'Wrong lengths of schedulers'
|
| 350 |
+
for i, o in enumerate(resume_optimizers):
|
| 351 |
+
self.optimizers[i].load_state_dict(o)
|
| 352 |
+
for i, s in enumerate(resume_schedulers):
|
| 353 |
+
self.schedulers[i].load_state_dict(s)
|
| 354 |
+
|
| 355 |
+
def reduce_loss_dict(self, loss_dict):
|
| 356 |
+
"""reduce loss dict.
|
| 357 |
+
|
| 358 |
+
In distributed training, it averages the losses among different GPUs .
|
| 359 |
+
|
| 360 |
+
Args:
|
| 361 |
+
loss_dict (OrderedDict): Loss dict.
|
| 362 |
+
"""
|
| 363 |
+
with torch.no_grad():
|
| 364 |
+
if self.opt['dist']:
|
| 365 |
+
keys = []
|
| 366 |
+
losses = []
|
| 367 |
+
for name, value in loss_dict.items():
|
| 368 |
+
keys.append(name)
|
| 369 |
+
losses.append(value)
|
| 370 |
+
losses = torch.stack(losses, 0)
|
| 371 |
+
torch.distributed.reduce(losses, dst=0)
|
| 372 |
+
if self.opt['rank'] == 0:
|
| 373 |
+
losses /= self.opt['world_size']
|
| 374 |
+
loss_dict = {key: loss for key, loss in zip(keys, losses)}
|
| 375 |
+
|
| 376 |
+
log_dict = OrderedDict()
|
| 377 |
+
for name, value in loss_dict.items():
|
| 378 |
+
log_dict[name] = value.mean().item()
|
| 379 |
+
|
| 380 |
+
return log_dict
|
basicsr/models/lr_scheduler.py
ADDED
|
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
from collections import Counter
|
| 3 |
+
from torch.optim.lr_scheduler import _LRScheduler
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class MultiStepRestartLR(_LRScheduler):
|
| 7 |
+
""" MultiStep with restarts learning rate scheme.
|
| 8 |
+
|
| 9 |
+
Args:
|
| 10 |
+
optimizer (torch.nn.optimizer): Torch optimizer.
|
| 11 |
+
milestones (list): Iterations that will decrease learning rate.
|
| 12 |
+
gamma (float): Decrease ratio. Default: 0.1.
|
| 13 |
+
restarts (list): Restart iterations. Default: [0].
|
| 14 |
+
restart_weights (list): Restart weights at each restart iteration.
|
| 15 |
+
Default: [1].
|
| 16 |
+
last_epoch (int): Used in _LRScheduler. Default: -1.
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
def __init__(self, optimizer, milestones, gamma=0.1, restarts=(0, ), restart_weights=(1, ), last_epoch=-1):
|
| 20 |
+
self.milestones = Counter(milestones)
|
| 21 |
+
self.gamma = gamma
|
| 22 |
+
self.restarts = restarts
|
| 23 |
+
self.restart_weights = restart_weights
|
| 24 |
+
assert len(self.restarts) == len(self.restart_weights), 'restarts and their weights do not match.'
|
| 25 |
+
super(MultiStepRestartLR, self).__init__(optimizer, last_epoch)
|
| 26 |
+
|
| 27 |
+
def get_lr(self):
|
| 28 |
+
if self.last_epoch in self.restarts:
|
| 29 |
+
weight = self.restart_weights[self.restarts.index(self.last_epoch)]
|
| 30 |
+
return [group['initial_lr'] * weight for group in self.optimizer.param_groups]
|
| 31 |
+
if self.last_epoch not in self.milestones:
|
| 32 |
+
return [group['lr'] for group in self.optimizer.param_groups]
|
| 33 |
+
return [group['lr'] * self.gamma**self.milestones[self.last_epoch] for group in self.optimizer.param_groups]
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def get_position_from_periods(iteration, cumulative_period):
|
| 37 |
+
"""Get the position from a period list.
|
| 38 |
+
|
| 39 |
+
It will return the index of the right-closest number in the period list.
|
| 40 |
+
For example, the cumulative_period = [100, 200, 300, 400],
|
| 41 |
+
if iteration == 50, return 0;
|
| 42 |
+
if iteration == 210, return 2;
|
| 43 |
+
if iteration == 300, return 2.
|
| 44 |
+
|
| 45 |
+
Args:
|
| 46 |
+
iteration (int): Current iteration.
|
| 47 |
+
cumulative_period (list[int]): Cumulative period list.
|
| 48 |
+
|
| 49 |
+
Returns:
|
| 50 |
+
int: The position of the right-closest number in the period list.
|
| 51 |
+
"""
|
| 52 |
+
for i, period in enumerate(cumulative_period):
|
| 53 |
+
if iteration <= period:
|
| 54 |
+
return i
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
class CosineAnnealingRestartLR(_LRScheduler):
|
| 58 |
+
""" Cosine annealing with restarts learning rate scheme.
|
| 59 |
+
|
| 60 |
+
An example of config:
|
| 61 |
+
periods = [10, 10, 10, 10]
|
| 62 |
+
restart_weights = [1, 0.5, 0.5, 0.5]
|
| 63 |
+
eta_min=1e-7
|
| 64 |
+
|
| 65 |
+
It has four cycles, each has 10 iterations. At 10th, 20th, 30th, the
|
| 66 |
+
scheduler will restart with the weights in restart_weights.
|
| 67 |
+
|
| 68 |
+
Args:
|
| 69 |
+
optimizer (torch.nn.optimizer): Torch optimizer.
|
| 70 |
+
periods (list): Period for each cosine anneling cycle.
|
| 71 |
+
restart_weights (list): Restart weights at each restart iteration.
|
| 72 |
+
Default: [1].
|
| 73 |
+
eta_min (float): The minimum lr. Default: 0.
|
| 74 |
+
last_epoch (int): Used in _LRScheduler. Default: -1.
|
| 75 |
+
"""
|
| 76 |
+
|
| 77 |
+
def __init__(self, optimizer, periods, restart_weights=(1, ), eta_min=0, last_epoch=-1):
|
| 78 |
+
self.periods = periods
|
| 79 |
+
self.restart_weights = restart_weights
|
| 80 |
+
self.eta_min = eta_min
|
| 81 |
+
assert (len(self.periods) == len(
|
| 82 |
+
self.restart_weights)), 'periods and restart_weights should have the same length.'
|
| 83 |
+
self.cumulative_period = [sum(self.periods[0:i + 1]) for i in range(0, len(self.periods))]
|
| 84 |
+
super(CosineAnnealingRestartLR, self).__init__(optimizer, last_epoch)
|
| 85 |
+
|
| 86 |
+
def get_lr(self):
|
| 87 |
+
idx = get_position_from_periods(self.last_epoch, self.cumulative_period)
|
| 88 |
+
current_weight = self.restart_weights[idx]
|
| 89 |
+
nearest_restart = 0 if idx == 0 else self.cumulative_period[idx - 1]
|
| 90 |
+
current_period = self.periods[idx]
|
| 91 |
+
|
| 92 |
+
return [
|
| 93 |
+
self.eta_min + current_weight * 0.5 * (base_lr - self.eta_min) *
|
| 94 |
+
(1 + math.cos(math.pi * ((self.last_epoch - nearest_restart) / current_period)))
|
| 95 |
+
for base_lr in self.base_lrs
|
| 96 |
+
]
|
basicsr/models/sr_model.py
ADDED
|
@@ -0,0 +1,231 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from collections import OrderedDict
|
| 3 |
+
from os import path as osp
|
| 4 |
+
from tqdm import tqdm
|
| 5 |
+
|
| 6 |
+
from basicsr.archs import build_network
|
| 7 |
+
from basicsr.losses import build_loss
|
| 8 |
+
from basicsr.metrics import calculate_metric
|
| 9 |
+
from basicsr.utils import get_root_logger, imwrite, tensor2img
|
| 10 |
+
from basicsr.utils.registry import MODEL_REGISTRY
|
| 11 |
+
from .base_model import BaseModel
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
@MODEL_REGISTRY.register()
|
| 15 |
+
class SRModel(BaseModel):
|
| 16 |
+
"""Base SR model for single image super-resolution."""
|
| 17 |
+
|
| 18 |
+
def __init__(self, opt):
|
| 19 |
+
super(SRModel, self).__init__(opt)
|
| 20 |
+
|
| 21 |
+
# define network
|
| 22 |
+
self.net_g = build_network(opt['network_g'])
|
| 23 |
+
self.net_g = self.model_to_device(self.net_g)
|
| 24 |
+
self.print_network(self.net_g)
|
| 25 |
+
|
| 26 |
+
# load pretrained models
|
| 27 |
+
load_path = self.opt['path'].get('pretrain_network_g', None)
|
| 28 |
+
if load_path is not None:
|
| 29 |
+
param_key = self.opt['path'].get('param_key_g', 'params')
|
| 30 |
+
self.load_network(self.net_g, load_path, self.opt['path'].get('strict_load_g', True), param_key)
|
| 31 |
+
|
| 32 |
+
if self.is_train:
|
| 33 |
+
self.init_training_settings()
|
| 34 |
+
|
| 35 |
+
def init_training_settings(self):
|
| 36 |
+
self.net_g.train()
|
| 37 |
+
train_opt = self.opt['train']
|
| 38 |
+
|
| 39 |
+
self.ema_decay = train_opt.get('ema_decay', 0)
|
| 40 |
+
if self.ema_decay > 0:
|
| 41 |
+
logger = get_root_logger()
|
| 42 |
+
logger.info(f'Use Exponential Moving Average with decay: {self.ema_decay}')
|
| 43 |
+
# define network net_g with Exponential Moving Average (EMA)
|
| 44 |
+
# net_g_ema is used only for testing on one GPU and saving
|
| 45 |
+
# There is no need to wrap with DistributedDataParallel
|
| 46 |
+
self.net_g_ema = build_network(self.opt['network_g']).to(self.device)
|
| 47 |
+
# load pretrained model
|
| 48 |
+
load_path = self.opt['path'].get('pretrain_network_g', None)
|
| 49 |
+
if load_path is not None:
|
| 50 |
+
self.load_network(self.net_g_ema, load_path, self.opt['path'].get('strict_load_g', True), 'params_ema')
|
| 51 |
+
else:
|
| 52 |
+
self.model_ema(0) # copy net_g weight
|
| 53 |
+
self.net_g_ema.eval()
|
| 54 |
+
|
| 55 |
+
# define losses
|
| 56 |
+
if train_opt.get('pixel_opt'):
|
| 57 |
+
self.cri_pix = build_loss(train_opt['pixel_opt']).to(self.device)
|
| 58 |
+
else:
|
| 59 |
+
self.cri_pix = None
|
| 60 |
+
|
| 61 |
+
if train_opt.get('perceptual_opt'):
|
| 62 |
+
self.cri_perceptual = build_loss(train_opt['perceptual_opt']).to(self.device)
|
| 63 |
+
else:
|
| 64 |
+
self.cri_perceptual = None
|
| 65 |
+
|
| 66 |
+
if self.cri_pix is None and self.cri_perceptual is None:
|
| 67 |
+
raise ValueError('Both pixel and perceptual losses are None.')
|
| 68 |
+
|
| 69 |
+
# set up optimizers and schedulers
|
| 70 |
+
self.setup_optimizers()
|
| 71 |
+
self.setup_schedulers()
|
| 72 |
+
|
| 73 |
+
def setup_optimizers(self):
|
| 74 |
+
train_opt = self.opt['train']
|
| 75 |
+
optim_params = []
|
| 76 |
+
for k, v in self.net_g.named_parameters():
|
| 77 |
+
if v.requires_grad:
|
| 78 |
+
optim_params.append(v)
|
| 79 |
+
else:
|
| 80 |
+
logger = get_root_logger()
|
| 81 |
+
logger.warning(f'Params {k} will not be optimized.')
|
| 82 |
+
|
| 83 |
+
optim_type = train_opt['optim_g'].pop('type')
|
| 84 |
+
self.optimizer_g = self.get_optimizer(optim_type, optim_params, **train_opt['optim_g'])
|
| 85 |
+
self.optimizers.append(self.optimizer_g)
|
| 86 |
+
|
| 87 |
+
def feed_data(self, data):
|
| 88 |
+
self.lq = data['lq'].to(self.device)
|
| 89 |
+
if 'gt' in data:
|
| 90 |
+
self.gt = data['gt'].to(self.device)
|
| 91 |
+
|
| 92 |
+
def optimize_parameters(self, current_iter):
|
| 93 |
+
self.optimizer_g.zero_grad()
|
| 94 |
+
self.output = self.net_g(self.lq)
|
| 95 |
+
|
| 96 |
+
l_total = 0
|
| 97 |
+
loss_dict = OrderedDict()
|
| 98 |
+
# pixel loss
|
| 99 |
+
if self.cri_pix:
|
| 100 |
+
l_pix = self.cri_pix(self.output, self.gt)
|
| 101 |
+
l_total += l_pix
|
| 102 |
+
loss_dict['l_pix'] = l_pix
|
| 103 |
+
# perceptual loss
|
| 104 |
+
if self.cri_perceptual:
|
| 105 |
+
l_percep, l_style = self.cri_perceptual(self.output, self.gt)
|
| 106 |
+
if l_percep is not None:
|
| 107 |
+
l_total += l_percep
|
| 108 |
+
loss_dict['l_percep'] = l_percep
|
| 109 |
+
if l_style is not None:
|
| 110 |
+
l_total += l_style
|
| 111 |
+
loss_dict['l_style'] = l_style
|
| 112 |
+
|
| 113 |
+
l_total.backward()
|
| 114 |
+
self.optimizer_g.step()
|
| 115 |
+
|
| 116 |
+
self.log_dict = self.reduce_loss_dict(loss_dict)
|
| 117 |
+
|
| 118 |
+
if self.ema_decay > 0:
|
| 119 |
+
self.model_ema(decay=self.ema_decay)
|
| 120 |
+
|
| 121 |
+
def test(self):
|
| 122 |
+
if hasattr(self, 'net_g_ema'):
|
| 123 |
+
self.net_g_ema.eval()
|
| 124 |
+
with torch.no_grad():
|
| 125 |
+
self.output = self.net_g_ema(self.lq)
|
| 126 |
+
else:
|
| 127 |
+
self.net_g.eval()
|
| 128 |
+
with torch.no_grad():
|
| 129 |
+
self.output = self.net_g(self.lq)
|
| 130 |
+
self.net_g.train()
|
| 131 |
+
|
| 132 |
+
def dist_validation(self, dataloader, current_iter, tb_logger, save_img):
|
| 133 |
+
if self.opt['rank'] == 0:
|
| 134 |
+
self.nondist_validation(dataloader, current_iter, tb_logger, save_img)
|
| 135 |
+
|
| 136 |
+
def nondist_validation(self, dataloader, current_iter, tb_logger, save_img):
|
| 137 |
+
dataset_name = dataloader.dataset.opt['name']
|
| 138 |
+
with_metrics = self.opt['val'].get('metrics') is not None
|
| 139 |
+
use_pbar = self.opt['val'].get('pbar', False)
|
| 140 |
+
|
| 141 |
+
if with_metrics:
|
| 142 |
+
if not hasattr(self, 'metric_results'): # only execute in the first run
|
| 143 |
+
self.metric_results = {metric: 0 for metric in self.opt['val']['metrics'].keys()}
|
| 144 |
+
# initialize the best metric results for each dataset_name (supporting multiple validation datasets)
|
| 145 |
+
self._initialize_best_metric_results(dataset_name)
|
| 146 |
+
# zero self.metric_results
|
| 147 |
+
if with_metrics:
|
| 148 |
+
self.metric_results = {metric: 0 for metric in self.metric_results}
|
| 149 |
+
|
| 150 |
+
metric_data = dict()
|
| 151 |
+
if use_pbar:
|
| 152 |
+
pbar = tqdm(total=len(dataloader), unit='image')
|
| 153 |
+
|
| 154 |
+
for idx, val_data in enumerate(dataloader):
|
| 155 |
+
img_name = osp.splitext(osp.basename(val_data['lq_path'][0]))[0]
|
| 156 |
+
self.feed_data(val_data)
|
| 157 |
+
self.test()
|
| 158 |
+
|
| 159 |
+
visuals = self.get_current_visuals()
|
| 160 |
+
sr_img = tensor2img([visuals['result']])
|
| 161 |
+
metric_data['img'] = sr_img
|
| 162 |
+
if 'gt' in visuals:
|
| 163 |
+
gt_img = tensor2img([visuals['gt']])
|
| 164 |
+
metric_data['img2'] = gt_img
|
| 165 |
+
del self.gt
|
| 166 |
+
|
| 167 |
+
# tentative for out of GPU memory
|
| 168 |
+
del self.lq
|
| 169 |
+
del self.output
|
| 170 |
+
torch.cuda.empty_cache()
|
| 171 |
+
|
| 172 |
+
if save_img:
|
| 173 |
+
if self.opt['is_train']:
|
| 174 |
+
save_img_path = osp.join(self.opt['path']['visualization'], img_name,
|
| 175 |
+
f'{img_name}_{current_iter}.png')
|
| 176 |
+
else:
|
| 177 |
+
if self.opt['val']['suffix']:
|
| 178 |
+
save_img_path = osp.join(self.opt['path']['visualization'], dataset_name,
|
| 179 |
+
f'{img_name}_{self.opt["val"]["suffix"]}.png')
|
| 180 |
+
else:
|
| 181 |
+
save_img_path = osp.join(self.opt['path']['visualization'], dataset_name,
|
| 182 |
+
f'{img_name}_{self.opt["name"]}.png')
|
| 183 |
+
imwrite(sr_img, save_img_path)
|
| 184 |
+
|
| 185 |
+
if with_metrics:
|
| 186 |
+
# calculate metrics
|
| 187 |
+
for name, opt_ in self.opt['val']['metrics'].items():
|
| 188 |
+
self.metric_results[name] += calculate_metric(metric_data, opt_)
|
| 189 |
+
if use_pbar:
|
| 190 |
+
pbar.update(1)
|
| 191 |
+
pbar.set_description(f'Test {img_name}')
|
| 192 |
+
if use_pbar:
|
| 193 |
+
pbar.close()
|
| 194 |
+
|
| 195 |
+
if with_metrics:
|
| 196 |
+
for metric in self.metric_results.keys():
|
| 197 |
+
self.metric_results[metric] /= (idx + 1)
|
| 198 |
+
# update the best metric result
|
| 199 |
+
self._update_best_metric_result(dataset_name, metric, self.metric_results[metric], current_iter)
|
| 200 |
+
|
| 201 |
+
self._log_validation_metric_values(current_iter, dataset_name, tb_logger)
|
| 202 |
+
|
| 203 |
+
def _log_validation_metric_values(self, current_iter, dataset_name, tb_logger):
|
| 204 |
+
log_str = f'Validation {dataset_name}\n'
|
| 205 |
+
for metric, value in self.metric_results.items():
|
| 206 |
+
log_str += f'\t # {metric}: {value:.4f}'
|
| 207 |
+
if hasattr(self, 'best_metric_results'):
|
| 208 |
+
log_str += (f'\tBest: {self.best_metric_results[dataset_name][metric]["val"]:.4f} @ '
|
| 209 |
+
f'{self.best_metric_results[dataset_name][metric]["iter"]} iter')
|
| 210 |
+
log_str += '\n'
|
| 211 |
+
|
| 212 |
+
logger = get_root_logger()
|
| 213 |
+
logger.info(log_str)
|
| 214 |
+
if tb_logger:
|
| 215 |
+
for metric, value in self.metric_results.items():
|
| 216 |
+
tb_logger.add_scalar(f'metrics/{dataset_name}/{metric}', value, current_iter)
|
| 217 |
+
|
| 218 |
+
def get_current_visuals(self):
|
| 219 |
+
out_dict = OrderedDict()
|
| 220 |
+
out_dict['lq'] = self.lq.detach().cpu()
|
| 221 |
+
out_dict['result'] = self.output.detach().cpu()
|
| 222 |
+
if hasattr(self, 'gt'):
|
| 223 |
+
out_dict['gt'] = self.gt.detach().cpu()
|
| 224 |
+
return out_dict
|
| 225 |
+
|
| 226 |
+
def save(self, epoch, current_iter):
|
| 227 |
+
if hasattr(self, 'net_g_ema'):
|
| 228 |
+
self.save_network([self.net_g, self.net_g_ema], 'net_g', current_iter, param_key=['params', 'params_ema'])
|
| 229 |
+
else:
|
| 230 |
+
self.save_network(self.net_g, 'net_g', current_iter)
|
| 231 |
+
self.save_training_state(epoch, current_iter)
|
basicsr/test.py
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
import torch
|
| 3 |
+
from os import path as osp
|
| 4 |
+
|
| 5 |
+
from basicsr.data import build_dataloader, build_dataset
|
| 6 |
+
from basicsr.models import build_model
|
| 7 |
+
from basicsr.utils import get_root_logger, get_time_str, make_exp_dirs
|
| 8 |
+
from basicsr.utils.options import dict2str, parse_options
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def test_pipeline(root_path):
|
| 12 |
+
# parse options, set distributed setting, set ramdom seed
|
| 13 |
+
opt, _ = parse_options(root_path, is_train=False)
|
| 14 |
+
|
| 15 |
+
torch.backends.cudnn.benchmark = True
|
| 16 |
+
# torch.backends.cudnn.deterministic = True
|
| 17 |
+
|
| 18 |
+
# mkdir and initialize loggers
|
| 19 |
+
make_exp_dirs(opt)
|
| 20 |
+
log_file = osp.join(opt['path']['log'], f"test_{opt['name']}_{get_time_str()}.log")
|
| 21 |
+
logger = get_root_logger(logger_name='basicsr', log_level=logging.INFO, log_file=log_file)
|
| 22 |
+
logger.info(dict2str(opt))
|
| 23 |
+
|
| 24 |
+
# create test dataset and dataloader
|
| 25 |
+
test_loaders = []
|
| 26 |
+
for _, dataset_opt in sorted(opt['datasets'].items()):
|
| 27 |
+
test_set = build_dataset(dataset_opt)
|
| 28 |
+
test_loader = build_dataloader(
|
| 29 |
+
test_set, dataset_opt, num_gpu=opt['num_gpu'], dist=opt['dist'], sampler=None, seed=opt['manual_seed'])
|
| 30 |
+
logger.info(f"Number of test images in {dataset_opt['name']}: {len(test_set)}")
|
| 31 |
+
test_loaders.append(test_loader)
|
| 32 |
+
|
| 33 |
+
# create model
|
| 34 |
+
model = build_model(opt)
|
| 35 |
+
|
| 36 |
+
for test_loader in test_loaders:
|
| 37 |
+
test_set_name = test_loader.dataset.opt['name']
|
| 38 |
+
logger.info(f'Testing {test_set_name}...')
|
| 39 |
+
model.validation(test_loader, current_iter=opt['name'], tb_logger=None, save_img=opt['val']['save_img'])
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
if __name__ == '__main__':
|
| 43 |
+
root_path = osp.abspath(osp.join(__file__, osp.pardir, osp.pardir))
|
| 44 |
+
test_pipeline(root_path)
|
basicsr/utils/__init__.py
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .file_client import FileClient
|
| 2 |
+
from .img_util import crop_border, imfrombytes, img2tensor, imwrite, tensor2img
|
| 3 |
+
from .logger import AvgTimer, MessageLogger, get_env_info, get_root_logger, init_tb_logger, init_wandb_logger
|
| 4 |
+
from .misc import check_resume, get_time_str, make_exp_dirs, mkdir_and_rename, scandir, set_random_seed, sizeof_fmt
|
| 5 |
+
|
| 6 |
+
__all__ = [
|
| 7 |
+
# file_client.py
|
| 8 |
+
'FileClient',
|
| 9 |
+
# img_util.py
|
| 10 |
+
'img2tensor',
|
| 11 |
+
'tensor2img',
|
| 12 |
+
'imfrombytes',
|
| 13 |
+
'imwrite',
|
| 14 |
+
'crop_border',
|
| 15 |
+
# logger.py
|
| 16 |
+
'MessageLogger',
|
| 17 |
+
'AvgTimer',
|
| 18 |
+
'init_tb_logger',
|
| 19 |
+
'init_wandb_logger',
|
| 20 |
+
'get_root_logger',
|
| 21 |
+
'get_env_info',
|
| 22 |
+
# misc.py
|
| 23 |
+
'set_random_seed',
|
| 24 |
+
'get_time_str',
|
| 25 |
+
'mkdir_and_rename',
|
| 26 |
+
'make_exp_dirs',
|
| 27 |
+
'scandir',
|
| 28 |
+
'check_resume',
|
| 29 |
+
'sizeof_fmt',
|
| 30 |
+
]
|
basicsr/utils/dist_util.py
ADDED
|
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Modified from https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/dist_utils.py # noqa: E501
|
| 2 |
+
import functools
|
| 3 |
+
import os
|
| 4 |
+
import subprocess
|
| 5 |
+
import torch
|
| 6 |
+
import torch.distributed as dist
|
| 7 |
+
import torch.multiprocessing as mp
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def init_dist(launcher, backend='nccl', **kwargs):
|
| 11 |
+
if mp.get_start_method(allow_none=True) is None:
|
| 12 |
+
mp.set_start_method('spawn')
|
| 13 |
+
if launcher == 'pytorch':
|
| 14 |
+
_init_dist_pytorch(backend, **kwargs)
|
| 15 |
+
elif launcher == 'slurm':
|
| 16 |
+
_init_dist_slurm(backend, **kwargs)
|
| 17 |
+
else:
|
| 18 |
+
raise ValueError(f'Invalid launcher type: {launcher}')
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def _init_dist_pytorch(backend, **kwargs):
|
| 22 |
+
rank = int(os.environ['RANK'])
|
| 23 |
+
num_gpus = torch.cuda.device_count()
|
| 24 |
+
torch.cuda.set_device(rank % num_gpus)
|
| 25 |
+
dist.init_process_group(backend=backend, **kwargs)
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def _init_dist_slurm(backend, port=None):
|
| 29 |
+
"""Initialize slurm distributed training environment.
|
| 30 |
+
|
| 31 |
+
If argument ``port`` is not specified, then the master port will be system
|
| 32 |
+
environment variable ``MASTER_PORT``. If ``MASTER_PORT`` is not in system
|
| 33 |
+
environment variable, then a default port ``29500`` will be used.
|
| 34 |
+
|
| 35 |
+
Args:
|
| 36 |
+
backend (str): Backend of torch.distributed.
|
| 37 |
+
port (int, optional): Master port. Defaults to None.
|
| 38 |
+
"""
|
| 39 |
+
proc_id = int(os.environ['SLURM_PROCID'])
|
| 40 |
+
ntasks = int(os.environ['SLURM_NTASKS'])
|
| 41 |
+
node_list = os.environ['SLURM_NODELIST']
|
| 42 |
+
num_gpus = torch.cuda.device_count()
|
| 43 |
+
torch.cuda.set_device(proc_id % num_gpus)
|
| 44 |
+
addr = subprocess.getoutput(f'scontrol show hostname {node_list} | head -n1')
|
| 45 |
+
# specify master port
|
| 46 |
+
if port is not None:
|
| 47 |
+
os.environ['MASTER_PORT'] = str(port)
|
| 48 |
+
elif 'MASTER_PORT' in os.environ:
|
| 49 |
+
pass # use MASTER_PORT in the environment variable
|
| 50 |
+
else:
|
| 51 |
+
# 29500 is torch.distributed default port
|
| 52 |
+
os.environ['MASTER_PORT'] = '29500'
|
| 53 |
+
os.environ['MASTER_ADDR'] = addr
|
| 54 |
+
os.environ['WORLD_SIZE'] = str(ntasks)
|
| 55 |
+
os.environ['LOCAL_RANK'] = str(proc_id % num_gpus)
|
| 56 |
+
os.environ['RANK'] = str(proc_id)
|
| 57 |
+
dist.init_process_group(backend=backend)
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
def get_dist_info():
|
| 61 |
+
if dist.is_available():
|
| 62 |
+
initialized = dist.is_initialized()
|
| 63 |
+
else:
|
| 64 |
+
initialized = False
|
| 65 |
+
if initialized:
|
| 66 |
+
rank = dist.get_rank()
|
| 67 |
+
world_size = dist.get_world_size()
|
| 68 |
+
else:
|
| 69 |
+
rank = 0
|
| 70 |
+
world_size = 1
|
| 71 |
+
return rank, world_size
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
def master_only(func):
|
| 75 |
+
|
| 76 |
+
@functools.wraps(func)
|
| 77 |
+
def wrapper(*args, **kwargs):
|
| 78 |
+
rank, _ = get_dist_info()
|
| 79 |
+
if rank == 0:
|
| 80 |
+
return func(*args, **kwargs)
|
| 81 |
+
|
| 82 |
+
return wrapper
|
basicsr/utils/file_client.py
ADDED
|
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Modified from https://github.com/open-mmlab/mmcv/blob/master/mmcv/fileio/file_client.py # noqa: E501
|
| 2 |
+
from abc import ABCMeta, abstractmethod
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
class BaseStorageBackend(metaclass=ABCMeta):
|
| 6 |
+
"""Abstract class of storage backends.
|
| 7 |
+
|
| 8 |
+
All backends need to implement two apis: ``get()`` and ``get_text()``.
|
| 9 |
+
``get()`` reads the file as a byte stream and ``get_text()`` reads the file
|
| 10 |
+
as texts.
|
| 11 |
+
"""
|
| 12 |
+
|
| 13 |
+
@abstractmethod
|
| 14 |
+
def get(self, filepath):
|
| 15 |
+
pass
|
| 16 |
+
|
| 17 |
+
@abstractmethod
|
| 18 |
+
def get_text(self, filepath):
|
| 19 |
+
pass
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
class MemcachedBackend(BaseStorageBackend):
|
| 23 |
+
"""Memcached storage backend.
|
| 24 |
+
|
| 25 |
+
Attributes:
|
| 26 |
+
server_list_cfg (str): Config file for memcached server list.
|
| 27 |
+
client_cfg (str): Config file for memcached client.
|
| 28 |
+
sys_path (str | None): Additional path to be appended to `sys.path`.
|
| 29 |
+
Default: None.
|
| 30 |
+
"""
|
| 31 |
+
|
| 32 |
+
def __init__(self, server_list_cfg, client_cfg, sys_path=None):
|
| 33 |
+
if sys_path is not None:
|
| 34 |
+
import sys
|
| 35 |
+
sys.path.append(sys_path)
|
| 36 |
+
try:
|
| 37 |
+
import mc
|
| 38 |
+
except ImportError:
|
| 39 |
+
raise ImportError('Please install memcached to enable MemcachedBackend.')
|
| 40 |
+
|
| 41 |
+
self.server_list_cfg = server_list_cfg
|
| 42 |
+
self.client_cfg = client_cfg
|
| 43 |
+
self._client = mc.MemcachedClient.GetInstance(self.server_list_cfg, self.client_cfg)
|
| 44 |
+
# mc.pyvector servers as a point which points to a memory cache
|
| 45 |
+
self._mc_buffer = mc.pyvector()
|
| 46 |
+
|
| 47 |
+
def get(self, filepath):
|
| 48 |
+
filepath = str(filepath)
|
| 49 |
+
import mc
|
| 50 |
+
self._client.Get(filepath, self._mc_buffer)
|
| 51 |
+
value_buf = mc.ConvertBuffer(self._mc_buffer)
|
| 52 |
+
return value_buf
|
| 53 |
+
|
| 54 |
+
def get_text(self, filepath):
|
| 55 |
+
raise NotImplementedError
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
class HardDiskBackend(BaseStorageBackend):
|
| 59 |
+
"""Raw hard disks storage backend."""
|
| 60 |
+
|
| 61 |
+
def get(self, filepath):
|
| 62 |
+
filepath = str(filepath)
|
| 63 |
+
with open(filepath, 'rb') as f:
|
| 64 |
+
value_buf = f.read()
|
| 65 |
+
return value_buf
|
| 66 |
+
|
| 67 |
+
def get_text(self, filepath):
|
| 68 |
+
filepath = str(filepath)
|
| 69 |
+
with open(filepath, 'r') as f:
|
| 70 |
+
value_buf = f.read()
|
| 71 |
+
return value_buf
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
class LmdbBackend(BaseStorageBackend):
|
| 75 |
+
"""Lmdb storage backend.
|
| 76 |
+
|
| 77 |
+
Args:
|
| 78 |
+
db_paths (str | list[str]): Lmdb database paths.
|
| 79 |
+
client_keys (str | list[str]): Lmdb client keys. Default: 'default'.
|
| 80 |
+
readonly (bool, optional): Lmdb environment parameter. If True,
|
| 81 |
+
disallow any write operations. Default: True.
|
| 82 |
+
lock (bool, optional): Lmdb environment parameter. If False, when
|
| 83 |
+
concurrent access occurs, do not lock the database. Default: False.
|
| 84 |
+
readahead (bool, optional): Lmdb environment parameter. If False,
|
| 85 |
+
disable the OS filesystem readahead mechanism, which may improve
|
| 86 |
+
random read performance when a database is larger than RAM.
|
| 87 |
+
Default: False.
|
| 88 |
+
|
| 89 |
+
Attributes:
|
| 90 |
+
db_paths (list): Lmdb database path.
|
| 91 |
+
_client (list): A list of several lmdb envs.
|
| 92 |
+
"""
|
| 93 |
+
|
| 94 |
+
def __init__(self, db_paths, client_keys='default', readonly=True, lock=False, readahead=False, **kwargs):
|
| 95 |
+
try:
|
| 96 |
+
import lmdb
|
| 97 |
+
except ImportError:
|
| 98 |
+
raise ImportError('Please install lmdb to enable LmdbBackend.')
|
| 99 |
+
|
| 100 |
+
if isinstance(client_keys, str):
|
| 101 |
+
client_keys = [client_keys]
|
| 102 |
+
|
| 103 |
+
if isinstance(db_paths, list):
|
| 104 |
+
self.db_paths = [str(v) for v in db_paths]
|
| 105 |
+
elif isinstance(db_paths, str):
|
| 106 |
+
self.db_paths = [str(db_paths)]
|
| 107 |
+
assert len(client_keys) == len(self.db_paths), ('client_keys and db_paths should have the same length, '
|
| 108 |
+
f'but received {len(client_keys)} and {len(self.db_paths)}.')
|
| 109 |
+
|
| 110 |
+
self._client = {}
|
| 111 |
+
for client, path in zip(client_keys, self.db_paths):
|
| 112 |
+
self._client[client] = lmdb.open(path, readonly=readonly, lock=lock, readahead=readahead, **kwargs)
|
| 113 |
+
|
| 114 |
+
def get(self, filepath, client_key):
|
| 115 |
+
"""Get values according to the filepath from one lmdb named client_key.
|
| 116 |
+
|
| 117 |
+
Args:
|
| 118 |
+
filepath (str | obj:`Path`): Here, filepath is the lmdb key.
|
| 119 |
+
client_key (str): Used for distinguishing different lmdb envs.
|
| 120 |
+
"""
|
| 121 |
+
filepath = str(filepath)
|
| 122 |
+
assert client_key in self._client, (f'client_key {client_key} is not in lmdb clients.')
|
| 123 |
+
client = self._client[client_key]
|
| 124 |
+
with client.begin(write=False) as txn:
|
| 125 |
+
value_buf = txn.get(filepath.encode('ascii'))
|
| 126 |
+
return value_buf
|
| 127 |
+
|
| 128 |
+
def get_text(self, filepath):
|
| 129 |
+
raise NotImplementedError
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
class FileClient(object):
|
| 133 |
+
"""A general file client to access files in different backend.
|
| 134 |
+
|
| 135 |
+
The client loads a file or text in a specified backend from its path
|
| 136 |
+
and return it as a binary file. it can also register other backend
|
| 137 |
+
accessor with a given name and backend class.
|
| 138 |
+
|
| 139 |
+
Attributes:
|
| 140 |
+
backend (str): The storage backend type. Options are "disk",
|
| 141 |
+
"memcached" and "lmdb".
|
| 142 |
+
client (:obj:`BaseStorageBackend`): The backend object.
|
| 143 |
+
"""
|
| 144 |
+
|
| 145 |
+
_backends = {
|
| 146 |
+
'disk': HardDiskBackend,
|
| 147 |
+
'memcached': MemcachedBackend,
|
| 148 |
+
'lmdb': LmdbBackend,
|
| 149 |
+
}
|
| 150 |
+
|
| 151 |
+
def __init__(self, backend='disk', **kwargs):
|
| 152 |
+
if backend not in self._backends:
|
| 153 |
+
raise ValueError(f'Backend {backend} is not supported. Currently supported ones'
|
| 154 |
+
f' are {list(self._backends.keys())}')
|
| 155 |
+
self.backend = backend
|
| 156 |
+
self.client = self._backends[backend](**kwargs)
|
| 157 |
+
|
| 158 |
+
def get(self, filepath, client_key='default'):
|
| 159 |
+
# client_key is used only for lmdb, where different fileclients have
|
| 160 |
+
# different lmdb environments.
|
| 161 |
+
if self.backend == 'lmdb':
|
| 162 |
+
return self.client.get(filepath, client_key)
|
| 163 |
+
else:
|
| 164 |
+
return self.client.get(filepath)
|
| 165 |
+
|
| 166 |
+
def get_text(self, filepath):
|
| 167 |
+
return self.client.get_text(filepath)
|
basicsr/utils/img_util.py
ADDED
|
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import cv2
|
| 2 |
+
import math
|
| 3 |
+
import numpy as np
|
| 4 |
+
import os
|
| 5 |
+
import torch
|
| 6 |
+
from torchvision.utils import make_grid
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def img2tensor(imgs, bgr2rgb=True, float32=True):
|
| 10 |
+
"""Numpy array to tensor.
|
| 11 |
+
|
| 12 |
+
Args:
|
| 13 |
+
imgs (list[ndarray] | ndarray): Input images.
|
| 14 |
+
bgr2rgb (bool): Whether to change bgr to rgb.
|
| 15 |
+
float32 (bool): Whether to change to float32.
|
| 16 |
+
|
| 17 |
+
Returns:
|
| 18 |
+
list[tensor] | tensor: Tensor images. If returned results only have
|
| 19 |
+
one element, just return tensor.
|
| 20 |
+
"""
|
| 21 |
+
|
| 22 |
+
def _totensor(img, bgr2rgb, float32):
|
| 23 |
+
if img.shape[2] == 3 and bgr2rgb:
|
| 24 |
+
if img.dtype == 'float64':
|
| 25 |
+
img = img.astype('float32')
|
| 26 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
| 27 |
+
img = torch.from_numpy(img.transpose(2, 0, 1))
|
| 28 |
+
if float32:
|
| 29 |
+
img = img.float()
|
| 30 |
+
return img
|
| 31 |
+
|
| 32 |
+
if isinstance(imgs, list):
|
| 33 |
+
return [_totensor(img, bgr2rgb, float32) for img in imgs]
|
| 34 |
+
else:
|
| 35 |
+
return _totensor(imgs, bgr2rgb, float32)
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def tensor2img(tensor, rgb2bgr=True, out_type=np.uint8, min_max=(0, 1)):
|
| 39 |
+
"""Convert torch Tensors into image numpy arrays.
|
| 40 |
+
|
| 41 |
+
After clamping to [min, max], values will be normalized to [0, 1].
|
| 42 |
+
|
| 43 |
+
Args:
|
| 44 |
+
tensor (Tensor or list[Tensor]): Accept shapes:
|
| 45 |
+
1) 4D mini-batch Tensor of shape (B x 3/1 x H x W);
|
| 46 |
+
2) 3D Tensor of shape (3/1 x H x W);
|
| 47 |
+
3) 2D Tensor of shape (H x W).
|
| 48 |
+
Tensor channel should be in RGB order.
|
| 49 |
+
rgb2bgr (bool): Whether to change rgb to bgr.
|
| 50 |
+
out_type (numpy type): output types. If ``np.uint8``, transform outputs
|
| 51 |
+
to uint8 type with range [0, 255]; otherwise, float type with
|
| 52 |
+
range [0, 1]. Default: ``np.uint8``.
|
| 53 |
+
min_max (tuple[int]): min and max values for clamp.
|
| 54 |
+
|
| 55 |
+
Returns:
|
| 56 |
+
(Tensor or list): 3D ndarray of shape (H x W x C) OR 2D ndarray of
|
| 57 |
+
shape (H x W). The channel order is BGR.
|
| 58 |
+
"""
|
| 59 |
+
if not (torch.is_tensor(tensor) or (isinstance(tensor, list) and all(torch.is_tensor(t) for t in tensor))):
|
| 60 |
+
raise TypeError(f'tensor or list of tensors expected, got {type(tensor)}')
|
| 61 |
+
|
| 62 |
+
if torch.is_tensor(tensor):
|
| 63 |
+
tensor = [tensor]
|
| 64 |
+
result = []
|
| 65 |
+
for _tensor in tensor:
|
| 66 |
+
_tensor = _tensor.squeeze(0).float().detach().cpu().clamp_(*min_max)
|
| 67 |
+
_tensor = (_tensor - min_max[0]) / (min_max[1] - min_max[0])
|
| 68 |
+
|
| 69 |
+
n_dim = _tensor.dim()
|
| 70 |
+
if n_dim == 4:
|
| 71 |
+
img_np = make_grid(_tensor, nrow=int(math.sqrt(_tensor.size(0))), normalize=False).numpy()
|
| 72 |
+
img_np = img_np.transpose(1, 2, 0)
|
| 73 |
+
if rgb2bgr:
|
| 74 |
+
img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
|
| 75 |
+
elif n_dim == 3:
|
| 76 |
+
img_np = _tensor.numpy()
|
| 77 |
+
img_np = img_np.transpose(1, 2, 0)
|
| 78 |
+
if img_np.shape[2] == 1: # gray image
|
| 79 |
+
img_np = np.squeeze(img_np, axis=2)
|
| 80 |
+
else:
|
| 81 |
+
if rgb2bgr:
|
| 82 |
+
img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
|
| 83 |
+
elif n_dim == 2:
|
| 84 |
+
img_np = _tensor.numpy()
|
| 85 |
+
else:
|
| 86 |
+
raise TypeError(f'Only support 4D, 3D or 2D tensor. But received with dimension: {n_dim}')
|
| 87 |
+
if out_type == np.uint8:
|
| 88 |
+
# Unlike MATLAB, numpy.unit8() WILL NOT round by default.
|
| 89 |
+
img_np = (img_np * 255.0).round()
|
| 90 |
+
img_np = img_np.astype(out_type)
|
| 91 |
+
result.append(img_np)
|
| 92 |
+
if len(result) == 1:
|
| 93 |
+
result = result[0]
|
| 94 |
+
return result
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
def tensor2img_fast(tensor, rgb2bgr=True, min_max=(0, 1)):
|
| 98 |
+
"""This implementation is slightly faster than tensor2img.
|
| 99 |
+
It now only supports torch tensor with shape (1, c, h, w).
|
| 100 |
+
|
| 101 |
+
Args:
|
| 102 |
+
tensor (Tensor): Now only support torch tensor with (1, c, h, w).
|
| 103 |
+
rgb2bgr (bool): Whether to change rgb to bgr. Default: True.
|
| 104 |
+
min_max (tuple[int]): min and max values for clamp.
|
| 105 |
+
"""
|
| 106 |
+
output = tensor.squeeze(0).detach().clamp_(*min_max).permute(1, 2, 0)
|
| 107 |
+
output = (output - min_max[0]) / (min_max[1] - min_max[0]) * 255
|
| 108 |
+
output = output.type(torch.uint8).cpu().numpy()
|
| 109 |
+
if rgb2bgr:
|
| 110 |
+
output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
|
| 111 |
+
return output
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
def imfrombytes(content, flag='color', float32=False):
|
| 115 |
+
"""Read an image from bytes.
|
| 116 |
+
|
| 117 |
+
Args:
|
| 118 |
+
content (bytes): Image bytes got from files or other streams.
|
| 119 |
+
flag (str): Flags specifying the color type of a loaded image,
|
| 120 |
+
candidates are `color`, `grayscale` and `unchanged`.
|
| 121 |
+
float32 (bool): Whether to change to float32., If True, will also norm
|
| 122 |
+
to [0, 1]. Default: False.
|
| 123 |
+
|
| 124 |
+
Returns:
|
| 125 |
+
ndarray: Loaded image array.
|
| 126 |
+
"""
|
| 127 |
+
img_np = np.frombuffer(content, np.uint8)
|
| 128 |
+
imread_flags = {'color': cv2.IMREAD_COLOR, 'grayscale': cv2.IMREAD_GRAYSCALE, 'unchanged': cv2.IMREAD_UNCHANGED}
|
| 129 |
+
img = cv2.imdecode(img_np, imread_flags[flag])
|
| 130 |
+
if float32:
|
| 131 |
+
img = img.astype(np.float32) / 255.
|
| 132 |
+
return img
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
def imwrite(img, file_path, params=None, auto_mkdir=True):
|
| 136 |
+
"""Write image to file.
|
| 137 |
+
|
| 138 |
+
Args:
|
| 139 |
+
img (ndarray): Image array to be written.
|
| 140 |
+
file_path (str): Image file path.
|
| 141 |
+
params (None or list): Same as opencv's :func:`imwrite` interface.
|
| 142 |
+
auto_mkdir (bool): If the parent folder of `file_path` does not exist,
|
| 143 |
+
whether to create it automatically.
|
| 144 |
+
|
| 145 |
+
Returns:
|
| 146 |
+
bool: Successful or not.
|
| 147 |
+
"""
|
| 148 |
+
if auto_mkdir:
|
| 149 |
+
dir_name = os.path.abspath(os.path.dirname(file_path))
|
| 150 |
+
os.makedirs(dir_name, exist_ok=True)
|
| 151 |
+
ok = cv2.imwrite(file_path, img, params)
|
| 152 |
+
if not ok:
|
| 153 |
+
raise IOError('Failed in writing images.')
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
def crop_border(imgs, crop_border):
|
| 157 |
+
"""Crop borders of images.
|
| 158 |
+
|
| 159 |
+
Args:
|
| 160 |
+
imgs (list[ndarray] | ndarray): Images with shape (h, w, c).
|
| 161 |
+
crop_border (int): Crop border for each end of height and weight.
|
| 162 |
+
|
| 163 |
+
Returns:
|
| 164 |
+
list[ndarray]: Cropped images.
|
| 165 |
+
"""
|
| 166 |
+
if crop_border == 0:
|
| 167 |
+
return imgs
|
| 168 |
+
else:
|
| 169 |
+
if isinstance(imgs, list):
|
| 170 |
+
return [v[crop_border:-crop_border, crop_border:-crop_border, ...] for v in imgs]
|
| 171 |
+
else:
|
| 172 |
+
return imgs[crop_border:-crop_border, crop_border:-crop_border, ...]
|
basicsr/utils/logger.py
ADDED
|
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import datetime
|
| 2 |
+
import logging
|
| 3 |
+
import time
|
| 4 |
+
|
| 5 |
+
from .dist_util import get_dist_info, master_only
|
| 6 |
+
|
| 7 |
+
initialized_logger = {}
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class AvgTimer():
|
| 11 |
+
|
| 12 |
+
def __init__(self, window=200):
|
| 13 |
+
self.window = window # average window
|
| 14 |
+
self.current_time = 0
|
| 15 |
+
self.total_time = 0
|
| 16 |
+
self.count = 0
|
| 17 |
+
self.avg_time = 0
|
| 18 |
+
self.start()
|
| 19 |
+
|
| 20 |
+
def start(self):
|
| 21 |
+
self.start_time = self.tic = time.time()
|
| 22 |
+
|
| 23 |
+
def record(self):
|
| 24 |
+
self.count += 1
|
| 25 |
+
self.toc = time.time()
|
| 26 |
+
self.current_time = self.toc - self.tic
|
| 27 |
+
self.total_time += self.current_time
|
| 28 |
+
# calculate average time
|
| 29 |
+
self.avg_time = self.total_time / self.count
|
| 30 |
+
|
| 31 |
+
# reset
|
| 32 |
+
if self.count > self.window:
|
| 33 |
+
self.count = 0
|
| 34 |
+
self.total_time = 0
|
| 35 |
+
|
| 36 |
+
self.tic = time.time()
|
| 37 |
+
|
| 38 |
+
def get_current_time(self):
|
| 39 |
+
return self.current_time
|
| 40 |
+
|
| 41 |
+
def get_avg_time(self):
|
| 42 |
+
return self.avg_time
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
class MessageLogger():
|
| 46 |
+
"""Message logger for printing.
|
| 47 |
+
|
| 48 |
+
Args:
|
| 49 |
+
opt (dict): Config. It contains the following keys:
|
| 50 |
+
name (str): Exp name.
|
| 51 |
+
logger (dict): Contains 'print_freq' (str) for logger interval.
|
| 52 |
+
train (dict): Contains 'total_iter' (int) for total iters.
|
| 53 |
+
use_tb_logger (bool): Use tensorboard logger.
|
| 54 |
+
start_iter (int): Start iter. Default: 1.
|
| 55 |
+
tb_logger (obj:`tb_logger`): Tensorboard logger. Default: None.
|
| 56 |
+
"""
|
| 57 |
+
|
| 58 |
+
def __init__(self, opt, start_iter=1, tb_logger=None):
|
| 59 |
+
self.exp_name = opt['name']
|
| 60 |
+
self.interval = opt['logger']['print_freq']
|
| 61 |
+
self.start_iter = start_iter
|
| 62 |
+
self.max_iters = opt['train']['total_iter']
|
| 63 |
+
self.use_tb_logger = opt['logger']['use_tb_logger']
|
| 64 |
+
self.tb_logger = tb_logger
|
| 65 |
+
self.start_time = time.time()
|
| 66 |
+
self.logger = get_root_logger()
|
| 67 |
+
|
| 68 |
+
def reset_start_time(self):
|
| 69 |
+
self.start_time = time.time()
|
| 70 |
+
|
| 71 |
+
@master_only
|
| 72 |
+
def __call__(self, log_vars):
|
| 73 |
+
"""Format logging message.
|
| 74 |
+
|
| 75 |
+
Args:
|
| 76 |
+
log_vars (dict): It contains the following keys:
|
| 77 |
+
epoch (int): Epoch number.
|
| 78 |
+
iter (int): Current iter.
|
| 79 |
+
lrs (list): List for learning rates.
|
| 80 |
+
|
| 81 |
+
time (float): Iter time.
|
| 82 |
+
data_time (float): Data time for each iter.
|
| 83 |
+
"""
|
| 84 |
+
# epoch, iter, learning rates
|
| 85 |
+
epoch = log_vars.pop('epoch')
|
| 86 |
+
current_iter = log_vars.pop('iter')
|
| 87 |
+
lrs = log_vars.pop('lrs')
|
| 88 |
+
|
| 89 |
+
message = (f'[{self.exp_name[:5]}..][epoch:{epoch:3d}, iter:{current_iter:8,d}, lr:(')
|
| 90 |
+
for v in lrs:
|
| 91 |
+
message += f'{v:.3e},'
|
| 92 |
+
message += ')] '
|
| 93 |
+
|
| 94 |
+
# time and estimated time
|
| 95 |
+
if 'time' in log_vars.keys():
|
| 96 |
+
iter_time = log_vars.pop('time')
|
| 97 |
+
data_time = log_vars.pop('data_time')
|
| 98 |
+
|
| 99 |
+
total_time = time.time() - self.start_time
|
| 100 |
+
time_sec_avg = total_time / (current_iter - self.start_iter + 1)
|
| 101 |
+
eta_sec = time_sec_avg * (self.max_iters - current_iter - 1)
|
| 102 |
+
eta_str = str(datetime.timedelta(seconds=int(eta_sec)))
|
| 103 |
+
message += f'[eta: {eta_str}, '
|
| 104 |
+
message += f'time (data): {iter_time:.3f} ({data_time:.3f})] '
|
| 105 |
+
|
| 106 |
+
# other items, especially losses
|
| 107 |
+
for k, v in log_vars.items():
|
| 108 |
+
message += f'{k}: {v:.4e} '
|
| 109 |
+
# tensorboard logger
|
| 110 |
+
if self.use_tb_logger and 'debug' not in self.exp_name:
|
| 111 |
+
if k.startswith('l_'):
|
| 112 |
+
self.tb_logger.add_scalar(f'losses/{k}', v, current_iter)
|
| 113 |
+
else:
|
| 114 |
+
self.tb_logger.add_scalar(k, v, current_iter)
|
| 115 |
+
self.logger.info(message)
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
@master_only
|
| 119 |
+
def init_tb_logger(log_dir):
|
| 120 |
+
from torch.utils.tensorboard import SummaryWriter
|
| 121 |
+
tb_logger = SummaryWriter(log_dir=log_dir)
|
| 122 |
+
return tb_logger
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
@master_only
|
| 126 |
+
def init_wandb_logger(opt):
|
| 127 |
+
"""We now only use wandb to sync tensorboard log."""
|
| 128 |
+
import wandb
|
| 129 |
+
logger = get_root_logger()
|
| 130 |
+
|
| 131 |
+
project = opt['logger']['wandb']['project']
|
| 132 |
+
resume_id = opt['logger']['wandb'].get('resume_id')
|
| 133 |
+
if resume_id:
|
| 134 |
+
wandb_id = resume_id
|
| 135 |
+
resume = 'allow'
|
| 136 |
+
logger.warning(f'Resume wandb logger with id={wandb_id}.')
|
| 137 |
+
else:
|
| 138 |
+
wandb_id = wandb.util.generate_id()
|
| 139 |
+
resume = 'never'
|
| 140 |
+
|
| 141 |
+
wandb.init(id=wandb_id, resume=resume, name=opt['name'], config=opt, project=project, sync_tensorboard=True)
|
| 142 |
+
|
| 143 |
+
logger.info(f'Use wandb logger with id={wandb_id}; project={project}.')
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
def get_root_logger(logger_name='basicsr', log_level=logging.INFO, log_file=None):
|
| 147 |
+
"""Get the root logger.
|
| 148 |
+
|
| 149 |
+
The logger will be initialized if it has not been initialized. By default a
|
| 150 |
+
StreamHandler will be added. If `log_file` is specified, a FileHandler will
|
| 151 |
+
also be added.
|
| 152 |
+
|
| 153 |
+
Args:
|
| 154 |
+
logger_name (str): root logger name. Default: 'basicsr'.
|
| 155 |
+
log_file (str | None): The log filename. If specified, a FileHandler
|
| 156 |
+
will be added to the root logger.
|
| 157 |
+
log_level (int): The root logger level. Note that only the process of
|
| 158 |
+
rank 0 is affected, while other processes will set the level to
|
| 159 |
+
"Error" and be silent most of the time.
|
| 160 |
+
|
| 161 |
+
Returns:
|
| 162 |
+
logging.Logger: The root logger.
|
| 163 |
+
"""
|
| 164 |
+
logger = logging.getLogger(logger_name)
|
| 165 |
+
# if the logger has been initialized, just return it
|
| 166 |
+
if logger_name in initialized_logger:
|
| 167 |
+
return logger
|
| 168 |
+
|
| 169 |
+
format_str = '%(asctime)s %(levelname)s: %(message)s'
|
| 170 |
+
stream_handler = logging.StreamHandler()
|
| 171 |
+
stream_handler.setFormatter(logging.Formatter(format_str))
|
| 172 |
+
logger.addHandler(stream_handler)
|
| 173 |
+
logger.propagate = False
|
| 174 |
+
rank, _ = get_dist_info()
|
| 175 |
+
if rank != 0:
|
| 176 |
+
logger.setLevel('ERROR')
|
| 177 |
+
elif log_file is not None:
|
| 178 |
+
logger.setLevel(log_level)
|
| 179 |
+
# add file handler
|
| 180 |
+
file_handler = logging.FileHandler(log_file, 'w')
|
| 181 |
+
file_handler.setFormatter(logging.Formatter(format_str))
|
| 182 |
+
file_handler.setLevel(log_level)
|
| 183 |
+
logger.addHandler(file_handler)
|
| 184 |
+
initialized_logger[logger_name] = True
|
| 185 |
+
return logger
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
def get_env_info():
|
| 189 |
+
"""Get environment information.
|
| 190 |
+
|
| 191 |
+
Currently, only log the software version.
|
| 192 |
+
"""
|
| 193 |
+
import torch
|
| 194 |
+
import torchvision
|
| 195 |
+
|
| 196 |
+
from basicsr.version import __version__
|
| 197 |
+
msg = r"""
|
| 198 |
+
____ _ _____ ____
|
| 199 |
+
/ __ ) ____ _ _____ (_)_____/ ___/ / __ \
|
| 200 |
+
/ __ |/ __ `// ___// // ___/\__ \ / /_/ /
|
| 201 |
+
/ /_/ // /_/ /(__ )/ // /__ ___/ // _, _/
|
| 202 |
+
/_____/ \__,_//____//_/ \___//____//_/ |_|
|
| 203 |
+
______ __ __ __ __
|
| 204 |
+
/ ____/____ ____ ____/ / / / __ __ _____ / /__ / /
|
| 205 |
+
/ / __ / __ \ / __ \ / __ / / / / / / // ___// //_/ / /
|
| 206 |
+
/ /_/ // /_/ // /_/ // /_/ / / /___/ /_/ // /__ / /< /_/
|
| 207 |
+
\____/ \____/ \____/ \____/ /_____/\____/ \___//_/|_| (_)
|
| 208 |
+
"""
|
| 209 |
+
msg += ('\nVersion Information: '
|
| 210 |
+
f'\n\tBasicSR: {__version__}'
|
| 211 |
+
f'\n\tPyTorch: {torch.__version__}'
|
| 212 |
+
f'\n\tTorchVision: {torchvision.__version__}')
|
| 213 |
+
return msg
|
basicsr/utils/matlab_functions.py
ADDED
|
@@ -0,0 +1,359 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
import numpy as np
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def cubic(x):
|
| 7 |
+
"""cubic function used for calculate_weights_indices."""
|
| 8 |
+
absx = torch.abs(x)
|
| 9 |
+
absx2 = absx**2
|
| 10 |
+
absx3 = absx**3
|
| 11 |
+
return (1.5 * absx3 - 2.5 * absx2 + 1) * (
|
| 12 |
+
(absx <= 1).type_as(absx)) + (-0.5 * absx3 + 2.5 * absx2 - 4 * absx + 2) * (((absx > 1) *
|
| 13 |
+
(absx <= 2)).type_as(absx))
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def calculate_weights_indices(in_length, out_length, scale, kernel, kernel_width, antialiasing):
|
| 17 |
+
"""Calculate weights and indices, used for imresize function.
|
| 18 |
+
|
| 19 |
+
Args:
|
| 20 |
+
in_length (int): Input length.
|
| 21 |
+
out_length (int): Output length.
|
| 22 |
+
scale (float): Scale factor.
|
| 23 |
+
kernel_width (int): Kernel width.
|
| 24 |
+
antialisaing (bool): Whether to apply anti-aliasing when downsampling.
|
| 25 |
+
"""
|
| 26 |
+
|
| 27 |
+
if (scale < 1) and antialiasing:
|
| 28 |
+
# Use a modified kernel (larger kernel width) to simultaneously
|
| 29 |
+
# interpolate and antialias
|
| 30 |
+
kernel_width = kernel_width / scale
|
| 31 |
+
|
| 32 |
+
# Output-space coordinates
|
| 33 |
+
x = torch.linspace(1, out_length, out_length)
|
| 34 |
+
|
| 35 |
+
# Input-space coordinates. Calculate the inverse mapping such that 0.5
|
| 36 |
+
# in output space maps to 0.5 in input space, and 0.5 + scale in output
|
| 37 |
+
# space maps to 1.5 in input space.
|
| 38 |
+
u = x / scale + 0.5 * (1 - 1 / scale)
|
| 39 |
+
|
| 40 |
+
# What is the left-most pixel that can be involved in the computation?
|
| 41 |
+
left = torch.floor(u - kernel_width / 2)
|
| 42 |
+
|
| 43 |
+
# What is the maximum number of pixels that can be involved in the
|
| 44 |
+
# computation? Note: it's OK to use an extra pixel here; if the
|
| 45 |
+
# corresponding weights are all zero, it will be eliminated at the end
|
| 46 |
+
# of this function.
|
| 47 |
+
p = math.ceil(kernel_width) + 2
|
| 48 |
+
|
| 49 |
+
# The indices of the input pixels involved in computing the k-th output
|
| 50 |
+
# pixel are in row k of the indices matrix.
|
| 51 |
+
indices = left.view(out_length, 1).expand(out_length, p) + torch.linspace(0, p - 1, p).view(1, p).expand(
|
| 52 |
+
out_length, p)
|
| 53 |
+
|
| 54 |
+
# The weights used to compute the k-th output pixel are in row k of the
|
| 55 |
+
# weights matrix.
|
| 56 |
+
distance_to_center = u.view(out_length, 1).expand(out_length, p) - indices
|
| 57 |
+
|
| 58 |
+
# apply cubic kernel
|
| 59 |
+
if (scale < 1) and antialiasing:
|
| 60 |
+
weights = scale * cubic(distance_to_center * scale)
|
| 61 |
+
else:
|
| 62 |
+
weights = cubic(distance_to_center)
|
| 63 |
+
|
| 64 |
+
# Normalize the weights matrix so that each row sums to 1.
|
| 65 |
+
weights_sum = torch.sum(weights, 1).view(out_length, 1)
|
| 66 |
+
weights = weights / weights_sum.expand(out_length, p)
|
| 67 |
+
|
| 68 |
+
# If a column in weights is all zero, get rid of it. only consider the
|
| 69 |
+
# first and last column.
|
| 70 |
+
weights_zero_tmp = torch.sum((weights == 0), 0)
|
| 71 |
+
if not math.isclose(weights_zero_tmp[0], 0, rel_tol=1e-6):
|
| 72 |
+
indices = indices.narrow(1, 1, p - 2)
|
| 73 |
+
weights = weights.narrow(1, 1, p - 2)
|
| 74 |
+
if not math.isclose(weights_zero_tmp[-1], 0, rel_tol=1e-6):
|
| 75 |
+
indices = indices.narrow(1, 0, p - 2)
|
| 76 |
+
weights = weights.narrow(1, 0, p - 2)
|
| 77 |
+
weights = weights.contiguous()
|
| 78 |
+
indices = indices.contiguous()
|
| 79 |
+
sym_len_s = -indices.min() + 1
|
| 80 |
+
sym_len_e = indices.max() - in_length
|
| 81 |
+
indices = indices + sym_len_s - 1
|
| 82 |
+
return weights, indices, int(sym_len_s), int(sym_len_e)
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
@torch.no_grad()
|
| 86 |
+
def imresize(img, scale, antialiasing=True):
|
| 87 |
+
"""imresize function same as MATLAB.
|
| 88 |
+
|
| 89 |
+
It now only supports bicubic.
|
| 90 |
+
The same scale applies for both height and width.
|
| 91 |
+
|
| 92 |
+
Args:
|
| 93 |
+
img (Tensor | Numpy array):
|
| 94 |
+
Tensor: Input image with shape (c, h, w), [0, 1] range.
|
| 95 |
+
Numpy: Input image with shape (h, w, c), [0, 1] range.
|
| 96 |
+
scale (float): Scale factor. The same scale applies for both height
|
| 97 |
+
and width.
|
| 98 |
+
antialisaing (bool): Whether to apply anti-aliasing when downsampling.
|
| 99 |
+
Default: True.
|
| 100 |
+
|
| 101 |
+
Returns:
|
| 102 |
+
Tensor: Output image with shape (c, h, w), [0, 1] range, w/o round.
|
| 103 |
+
"""
|
| 104 |
+
squeeze_flag = False
|
| 105 |
+
if type(img).__module__ == np.__name__: # numpy type
|
| 106 |
+
numpy_type = True
|
| 107 |
+
if img.ndim == 2:
|
| 108 |
+
img = img[:, :, None]
|
| 109 |
+
squeeze_flag = True
|
| 110 |
+
img = torch.from_numpy(img.transpose(2, 0, 1)).float()
|
| 111 |
+
else:
|
| 112 |
+
numpy_type = False
|
| 113 |
+
if img.ndim == 2:
|
| 114 |
+
img = img.unsqueeze(0)
|
| 115 |
+
squeeze_flag = True
|
| 116 |
+
|
| 117 |
+
in_c, in_h, in_w = img.size()
|
| 118 |
+
out_h, out_w = math.ceil(in_h * scale), math.ceil(in_w * scale)
|
| 119 |
+
kernel_width = 4
|
| 120 |
+
kernel = 'cubic'
|
| 121 |
+
|
| 122 |
+
# get weights and indices
|
| 123 |
+
weights_h, indices_h, sym_len_hs, sym_len_he = calculate_weights_indices(in_h, out_h, scale, kernel, kernel_width,
|
| 124 |
+
antialiasing)
|
| 125 |
+
weights_w, indices_w, sym_len_ws, sym_len_we = calculate_weights_indices(in_w, out_w, scale, kernel, kernel_width,
|
| 126 |
+
antialiasing)
|
| 127 |
+
# process H dimension
|
| 128 |
+
# symmetric copying
|
| 129 |
+
img_aug = torch.FloatTensor(in_c, in_h + sym_len_hs + sym_len_he, in_w)
|
| 130 |
+
img_aug.narrow(1, sym_len_hs, in_h).copy_(img)
|
| 131 |
+
|
| 132 |
+
sym_patch = img[:, :sym_len_hs, :]
|
| 133 |
+
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
|
| 134 |
+
sym_patch_inv = sym_patch.index_select(1, inv_idx)
|
| 135 |
+
img_aug.narrow(1, 0, sym_len_hs).copy_(sym_patch_inv)
|
| 136 |
+
|
| 137 |
+
sym_patch = img[:, -sym_len_he:, :]
|
| 138 |
+
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
|
| 139 |
+
sym_patch_inv = sym_patch.index_select(1, inv_idx)
|
| 140 |
+
img_aug.narrow(1, sym_len_hs + in_h, sym_len_he).copy_(sym_patch_inv)
|
| 141 |
+
|
| 142 |
+
out_1 = torch.FloatTensor(in_c, out_h, in_w)
|
| 143 |
+
kernel_width = weights_h.size(1)
|
| 144 |
+
for i in range(out_h):
|
| 145 |
+
idx = int(indices_h[i][0])
|
| 146 |
+
for j in range(in_c):
|
| 147 |
+
out_1[j, i, :] = img_aug[j, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_h[i])
|
| 148 |
+
|
| 149 |
+
# process W dimension
|
| 150 |
+
# symmetric copying
|
| 151 |
+
out_1_aug = torch.FloatTensor(in_c, out_h, in_w + sym_len_ws + sym_len_we)
|
| 152 |
+
out_1_aug.narrow(2, sym_len_ws, in_w).copy_(out_1)
|
| 153 |
+
|
| 154 |
+
sym_patch = out_1[:, :, :sym_len_ws]
|
| 155 |
+
inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
|
| 156 |
+
sym_patch_inv = sym_patch.index_select(2, inv_idx)
|
| 157 |
+
out_1_aug.narrow(2, 0, sym_len_ws).copy_(sym_patch_inv)
|
| 158 |
+
|
| 159 |
+
sym_patch = out_1[:, :, -sym_len_we:]
|
| 160 |
+
inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
|
| 161 |
+
sym_patch_inv = sym_patch.index_select(2, inv_idx)
|
| 162 |
+
out_1_aug.narrow(2, sym_len_ws + in_w, sym_len_we).copy_(sym_patch_inv)
|
| 163 |
+
|
| 164 |
+
out_2 = torch.FloatTensor(in_c, out_h, out_w)
|
| 165 |
+
kernel_width = weights_w.size(1)
|
| 166 |
+
for i in range(out_w):
|
| 167 |
+
idx = int(indices_w[i][0])
|
| 168 |
+
for j in range(in_c):
|
| 169 |
+
out_2[j, :, i] = out_1_aug[j, :, idx:idx + kernel_width].mv(weights_w[i])
|
| 170 |
+
|
| 171 |
+
if squeeze_flag:
|
| 172 |
+
out_2 = out_2.squeeze(0)
|
| 173 |
+
if numpy_type:
|
| 174 |
+
out_2 = out_2.numpy()
|
| 175 |
+
if not squeeze_flag:
|
| 176 |
+
out_2 = out_2.transpose(1, 2, 0)
|
| 177 |
+
|
| 178 |
+
return out_2
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
def rgb2ycbcr(img, y_only=False):
|
| 182 |
+
"""Convert a RGB image to YCbCr image.
|
| 183 |
+
|
| 184 |
+
This function produces the same results as Matlab's `rgb2ycbcr` function.
|
| 185 |
+
It implements the ITU-R BT.601 conversion for standard-definition
|
| 186 |
+
television. See more details in
|
| 187 |
+
https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion.
|
| 188 |
+
|
| 189 |
+
It differs from a similar function in cv2.cvtColor: `RGB <-> YCrCb`.
|
| 190 |
+
In OpenCV, it implements a JPEG conversion. See more details in
|
| 191 |
+
https://en.wikipedia.org/wiki/YCbCr#JPEG_conversion.
|
| 192 |
+
|
| 193 |
+
Args:
|
| 194 |
+
img (ndarray): The input image. It accepts:
|
| 195 |
+
1. np.uint8 type with range [0, 255];
|
| 196 |
+
2. np.float32 type with range [0, 1].
|
| 197 |
+
y_only (bool): Whether to only return Y channel. Default: False.
|
| 198 |
+
|
| 199 |
+
Returns:
|
| 200 |
+
ndarray: The converted YCbCr image. The output image has the same type
|
| 201 |
+
and range as input image.
|
| 202 |
+
"""
|
| 203 |
+
img_type = img.dtype
|
| 204 |
+
img = _convert_input_type_range(img)
|
| 205 |
+
if y_only:
|
| 206 |
+
out_img = np.dot(img, [65.481, 128.553, 24.966]) + 16.0
|
| 207 |
+
else:
|
| 208 |
+
out_img = np.matmul(
|
| 209 |
+
img, [[65.481, -37.797, 112.0], [128.553, -74.203, -93.786], [24.966, 112.0, -18.214]]) + [16, 128, 128]
|
| 210 |
+
out_img = _convert_output_type_range(out_img, img_type)
|
| 211 |
+
return out_img
|
| 212 |
+
|
| 213 |
+
|
| 214 |
+
def bgr2ycbcr(img, y_only=False):
|
| 215 |
+
"""Convert a BGR image to YCbCr image.
|
| 216 |
+
|
| 217 |
+
The bgr version of rgb2ycbcr.
|
| 218 |
+
It implements the ITU-R BT.601 conversion for standard-definition
|
| 219 |
+
television. See more details in
|
| 220 |
+
https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion.
|
| 221 |
+
|
| 222 |
+
It differs from a similar function in cv2.cvtColor: `BGR <-> YCrCb`.
|
| 223 |
+
In OpenCV, it implements a JPEG conversion. See more details in
|
| 224 |
+
https://en.wikipedia.org/wiki/YCbCr#JPEG_conversion.
|
| 225 |
+
|
| 226 |
+
Args:
|
| 227 |
+
img (ndarray): The input image. It accepts:
|
| 228 |
+
1. np.uint8 type with range [0, 255];
|
| 229 |
+
2. np.float32 type with range [0, 1].
|
| 230 |
+
y_only (bool): Whether to only return Y channel. Default: False.
|
| 231 |
+
|
| 232 |
+
Returns:
|
| 233 |
+
ndarray: The converted YCbCr image. The output image has the same type
|
| 234 |
+
and range as input image.
|
| 235 |
+
"""
|
| 236 |
+
img_type = img.dtype
|
| 237 |
+
img = _convert_input_type_range(img)
|
| 238 |
+
if y_only:
|
| 239 |
+
out_img = np.dot(img, [24.966, 128.553, 65.481]) + 16.0
|
| 240 |
+
else:
|
| 241 |
+
out_img = np.matmul(
|
| 242 |
+
img, [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786], [65.481, -37.797, 112.0]]) + [16, 128, 128]
|
| 243 |
+
out_img = _convert_output_type_range(out_img, img_type)
|
| 244 |
+
return out_img
|
| 245 |
+
|
| 246 |
+
|
| 247 |
+
def ycbcr2rgb(img):
|
| 248 |
+
"""Convert a YCbCr image to RGB image.
|
| 249 |
+
|
| 250 |
+
This function produces the same results as Matlab's ycbcr2rgb function.
|
| 251 |
+
It implements the ITU-R BT.601 conversion for standard-definition
|
| 252 |
+
television. See more details in
|
| 253 |
+
https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion.
|
| 254 |
+
|
| 255 |
+
It differs from a similar function in cv2.cvtColor: `YCrCb <-> RGB`.
|
| 256 |
+
In OpenCV, it implements a JPEG conversion. See more details in
|
| 257 |
+
https://en.wikipedia.org/wiki/YCbCr#JPEG_conversion.
|
| 258 |
+
|
| 259 |
+
Args:
|
| 260 |
+
img (ndarray): The input image. It accepts:
|
| 261 |
+
1. np.uint8 type with range [0, 255];
|
| 262 |
+
2. np.float32 type with range [0, 1].
|
| 263 |
+
|
| 264 |
+
Returns:
|
| 265 |
+
ndarray: The converted RGB image. The output image has the same type
|
| 266 |
+
and range as input image.
|
| 267 |
+
"""
|
| 268 |
+
img_type = img.dtype
|
| 269 |
+
img = _convert_input_type_range(img) * 255
|
| 270 |
+
out_img = np.matmul(img, [[0.00456621, 0.00456621, 0.00456621], [0, -0.00153632, 0.00791071],
|
| 271 |
+
[0.00625893, -0.00318811, 0]]) * 255.0 + [-222.921, 135.576, -276.836] # noqa: E126
|
| 272 |
+
out_img = _convert_output_type_range(out_img, img_type)
|
| 273 |
+
return out_img
|
| 274 |
+
|
| 275 |
+
|
| 276 |
+
def ycbcr2bgr(img):
|
| 277 |
+
"""Convert a YCbCr image to BGR image.
|
| 278 |
+
|
| 279 |
+
The bgr version of ycbcr2rgb.
|
| 280 |
+
It implements the ITU-R BT.601 conversion for standard-definition
|
| 281 |
+
television. See more details in
|
| 282 |
+
https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion.
|
| 283 |
+
|
| 284 |
+
It differs from a similar function in cv2.cvtColor: `YCrCb <-> BGR`.
|
| 285 |
+
In OpenCV, it implements a JPEG conversion. See more details in
|
| 286 |
+
https://en.wikipedia.org/wiki/YCbCr#JPEG_conversion.
|
| 287 |
+
|
| 288 |
+
Args:
|
| 289 |
+
img (ndarray): The input image. It accepts:
|
| 290 |
+
1. np.uint8 type with range [0, 255];
|
| 291 |
+
2. np.float32 type with range [0, 1].
|
| 292 |
+
|
| 293 |
+
Returns:
|
| 294 |
+
ndarray: The converted BGR image. The output image has the same type
|
| 295 |
+
and range as input image.
|
| 296 |
+
"""
|
| 297 |
+
img_type = img.dtype
|
| 298 |
+
img = _convert_input_type_range(img) * 255
|
| 299 |
+
out_img = np.matmul(img, [[0.00456621, 0.00456621, 0.00456621], [0.00791071, -0.00153632, 0],
|
| 300 |
+
[0, -0.00318811, 0.00625893]]) * 255.0 + [-276.836, 135.576, -222.921] # noqa: E126
|
| 301 |
+
out_img = _convert_output_type_range(out_img, img_type)
|
| 302 |
+
return out_img
|
| 303 |
+
|
| 304 |
+
|
| 305 |
+
def _convert_input_type_range(img):
|
| 306 |
+
"""Convert the type and range of the input image.
|
| 307 |
+
|
| 308 |
+
It converts the input image to np.float32 type and range of [0, 1].
|
| 309 |
+
It is mainly used for pre-processing the input image in colorspace
|
| 310 |
+
conversion functions such as rgb2ycbcr and ycbcr2rgb.
|
| 311 |
+
|
| 312 |
+
Args:
|
| 313 |
+
img (ndarray): The input image. It accepts:
|
| 314 |
+
1. np.uint8 type with range [0, 255];
|
| 315 |
+
2. np.float32 type with range [0, 1].
|
| 316 |
+
|
| 317 |
+
Returns:
|
| 318 |
+
(ndarray): The converted image with type of np.float32 and range of
|
| 319 |
+
[0, 1].
|
| 320 |
+
"""
|
| 321 |
+
img_type = img.dtype
|
| 322 |
+
img = img.astype(np.float32)
|
| 323 |
+
if img_type == np.float32:
|
| 324 |
+
pass
|
| 325 |
+
elif img_type == np.uint8:
|
| 326 |
+
img /= 255.
|
| 327 |
+
else:
|
| 328 |
+
raise TypeError(f'The img type should be np.float32 or np.uint8, but got {img_type}')
|
| 329 |
+
return img
|
| 330 |
+
|
| 331 |
+
|
| 332 |
+
def _convert_output_type_range(img, dst_type):
|
| 333 |
+
"""Convert the type and range of the image according to dst_type.
|
| 334 |
+
|
| 335 |
+
It converts the image to desired type and range. If `dst_type` is np.uint8,
|
| 336 |
+
images will be converted to np.uint8 type with range [0, 255]. If
|
| 337 |
+
`dst_type` is np.float32, it converts the image to np.float32 type with
|
| 338 |
+
range [0, 1].
|
| 339 |
+
It is mainly used for post-processing images in colorspace conversion
|
| 340 |
+
functions such as rgb2ycbcr and ycbcr2rgb.
|
| 341 |
+
|
| 342 |
+
Args:
|
| 343 |
+
img (ndarray): The image to be converted with np.float32 type and
|
| 344 |
+
range [0, 255].
|
| 345 |
+
dst_type (np.uint8 | np.float32): If dst_type is np.uint8, it
|
| 346 |
+
converts the image to np.uint8 type with range [0, 255]. If
|
| 347 |
+
dst_type is np.float32, it converts the image to np.float32 type
|
| 348 |
+
with range [0, 1].
|
| 349 |
+
|
| 350 |
+
Returns:
|
| 351 |
+
(ndarray): The converted image with desired type and range.
|
| 352 |
+
"""
|
| 353 |
+
if dst_type not in (np.uint8, np.float32):
|
| 354 |
+
raise TypeError(f'The dst_type should be np.float32 or np.uint8, but got {dst_type}')
|
| 355 |
+
if dst_type == np.uint8:
|
| 356 |
+
img = img.round()
|
| 357 |
+
else:
|
| 358 |
+
img /= 255.
|
| 359 |
+
return img.astype(dst_type)
|
basicsr/utils/misc.py
ADDED
|
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import os
|
| 3 |
+
import random
|
| 4 |
+
import time
|
| 5 |
+
import torch
|
| 6 |
+
from os import path as osp
|
| 7 |
+
|
| 8 |
+
from .dist_util import master_only
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def set_random_seed(seed):
|
| 12 |
+
"""Set random seeds."""
|
| 13 |
+
random.seed(seed)
|
| 14 |
+
np.random.seed(seed)
|
| 15 |
+
torch.manual_seed(seed)
|
| 16 |
+
torch.cuda.manual_seed(seed)
|
| 17 |
+
torch.cuda.manual_seed_all(seed)
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def get_time_str():
|
| 21 |
+
return time.strftime('%Y%m%d_%H%M%S', time.localtime())
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def mkdir_and_rename(path):
|
| 25 |
+
"""mkdirs. If path exists, rename it with timestamp and create a new one.
|
| 26 |
+
|
| 27 |
+
Args:
|
| 28 |
+
path (str): Folder path.
|
| 29 |
+
"""
|
| 30 |
+
if osp.exists(path):
|
| 31 |
+
new_name = path + '_archived_' + get_time_str()
|
| 32 |
+
print(f'Path already exists. Rename it to {new_name}', flush=True)
|
| 33 |
+
os.rename(path, new_name)
|
| 34 |
+
os.makedirs(path, exist_ok=True)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
@master_only
|
| 38 |
+
def make_exp_dirs(opt):
|
| 39 |
+
"""Make dirs for experiments."""
|
| 40 |
+
path_opt = opt['path'].copy()
|
| 41 |
+
if opt['is_train']:
|
| 42 |
+
mkdir_and_rename(path_opt.pop('experiments_root'))
|
| 43 |
+
else:
|
| 44 |
+
mkdir_and_rename(path_opt.pop('results_root'))
|
| 45 |
+
for key, path in path_opt.items():
|
| 46 |
+
if ('strict_load' in key) or ('pretrain_network' in key) or ('resume' in key) or ('param_key' in key):
|
| 47 |
+
continue
|
| 48 |
+
else:
|
| 49 |
+
os.makedirs(path, exist_ok=True)
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def scandir(dir_path, suffix=None, recursive=False, full_path=False):
|
| 53 |
+
"""Scan a directory to find the interested files.
|
| 54 |
+
|
| 55 |
+
Args:
|
| 56 |
+
dir_path (str): Path of the directory.
|
| 57 |
+
suffix (str | tuple(str), optional): File suffix that we are
|
| 58 |
+
interested in. Default: None.
|
| 59 |
+
recursive (bool, optional): If set to True, recursively scan the
|
| 60 |
+
directory. Default: False.
|
| 61 |
+
full_path (bool, optional): If set to True, include the dir_path.
|
| 62 |
+
Default: False.
|
| 63 |
+
|
| 64 |
+
Returns:
|
| 65 |
+
A generator for all the interested files with relative paths.
|
| 66 |
+
"""
|
| 67 |
+
|
| 68 |
+
if (suffix is not None) and not isinstance(suffix, (str, tuple)):
|
| 69 |
+
raise TypeError('"suffix" must be a string or tuple of strings')
|
| 70 |
+
|
| 71 |
+
root = dir_path
|
| 72 |
+
|
| 73 |
+
def _scandir(dir_path, suffix, recursive):
|
| 74 |
+
for entry in os.scandir(dir_path):
|
| 75 |
+
if not entry.name.startswith('.') and entry.is_file():
|
| 76 |
+
if full_path:
|
| 77 |
+
return_path = entry.path
|
| 78 |
+
else:
|
| 79 |
+
return_path = osp.relpath(entry.path, root)
|
| 80 |
+
|
| 81 |
+
if suffix is None:
|
| 82 |
+
yield return_path
|
| 83 |
+
elif return_path.endswith(suffix):
|
| 84 |
+
yield return_path
|
| 85 |
+
else:
|
| 86 |
+
if recursive:
|
| 87 |
+
yield from _scandir(entry.path, suffix=suffix, recursive=recursive)
|
| 88 |
+
else:
|
| 89 |
+
continue
|
| 90 |
+
|
| 91 |
+
return _scandir(dir_path, suffix=suffix, recursive=recursive)
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def check_resume(opt, resume_iter):
|
| 95 |
+
"""Check resume states and pretrain_network paths.
|
| 96 |
+
|
| 97 |
+
Args:
|
| 98 |
+
opt (dict): Options.
|
| 99 |
+
resume_iter (int): Resume iteration.
|
| 100 |
+
"""
|
| 101 |
+
if opt['path']['resume_state']:
|
| 102 |
+
# get all the networks
|
| 103 |
+
networks = [key for key in opt.keys() if key.startswith('network_')]
|
| 104 |
+
flag_pretrain = False
|
| 105 |
+
for network in networks:
|
| 106 |
+
if opt['path'].get(f'pretrain_{network}') is not None:
|
| 107 |
+
flag_pretrain = True
|
| 108 |
+
if flag_pretrain:
|
| 109 |
+
print('pretrain_network path will be ignored during resuming.')
|
| 110 |
+
# set pretrained model paths
|
| 111 |
+
for network in networks:
|
| 112 |
+
name = f'pretrain_{network}'
|
| 113 |
+
basename = network.replace('network_', '')
|
| 114 |
+
if opt['path'].get('ignore_resume_networks') is None or (network
|
| 115 |
+
not in opt['path']['ignore_resume_networks']):
|
| 116 |
+
opt['path'][name] = osp.join(opt['path']['models'], f'net_{basename}_{resume_iter}.pth')
|
| 117 |
+
print(f"Set {name} to {opt['path'][name]}")
|
| 118 |
+
|
| 119 |
+
# change param_key to params in resume
|
| 120 |
+
param_keys = [key for key in opt['path'].keys() if key.startswith('param_key')]
|
| 121 |
+
for param_key in param_keys:
|
| 122 |
+
if opt['path'][param_key] == 'params_ema':
|
| 123 |
+
opt['path'][param_key] = 'params'
|
| 124 |
+
print(f'Set {param_key} to params')
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
def sizeof_fmt(size, suffix='B'):
|
| 128 |
+
"""Get human readable file size.
|
| 129 |
+
|
| 130 |
+
Args:
|
| 131 |
+
size (int): File size.
|
| 132 |
+
suffix (str): Suffix. Default: 'B'.
|
| 133 |
+
|
| 134 |
+
Return:
|
| 135 |
+
str: Formatted file siz.
|
| 136 |
+
"""
|
| 137 |
+
for unit in ['', 'K', 'M', 'G', 'T', 'P', 'E', 'Z']:
|
| 138 |
+
if abs(size) < 1024.0:
|
| 139 |
+
return f'{size:3.1f} {unit}{suffix}'
|
| 140 |
+
size /= 1024.0
|
| 141 |
+
return f'{size:3.1f} Y{suffix}'
|
basicsr/utils/options.py
ADDED
|
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import random
|
| 3 |
+
import torch
|
| 4 |
+
import yaml
|
| 5 |
+
from collections import OrderedDict
|
| 6 |
+
from os import path as osp
|
| 7 |
+
|
| 8 |
+
from basicsr.utils import set_random_seed
|
| 9 |
+
from basicsr.utils.dist_util import get_dist_info, init_dist, master_only
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def ordered_yaml():
|
| 13 |
+
"""Support OrderedDict for yaml.
|
| 14 |
+
|
| 15 |
+
Returns:
|
| 16 |
+
yaml Loader and Dumper.
|
| 17 |
+
"""
|
| 18 |
+
try:
|
| 19 |
+
from yaml import CDumper as Dumper
|
| 20 |
+
from yaml import CLoader as Loader
|
| 21 |
+
except ImportError:
|
| 22 |
+
from yaml import Dumper, Loader
|
| 23 |
+
|
| 24 |
+
_mapping_tag = yaml.resolver.BaseResolver.DEFAULT_MAPPING_TAG
|
| 25 |
+
|
| 26 |
+
def dict_representer(dumper, data):
|
| 27 |
+
return dumper.represent_dict(data.items())
|
| 28 |
+
|
| 29 |
+
def dict_constructor(loader, node):
|
| 30 |
+
return OrderedDict(loader.construct_pairs(node))
|
| 31 |
+
|
| 32 |
+
Dumper.add_representer(OrderedDict, dict_representer)
|
| 33 |
+
Loader.add_constructor(_mapping_tag, dict_constructor)
|
| 34 |
+
return Loader, Dumper
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def dict2str(opt, indent_level=1):
|
| 38 |
+
"""dict to string for printing options.
|
| 39 |
+
|
| 40 |
+
Args:
|
| 41 |
+
opt (dict): Option dict.
|
| 42 |
+
indent_level (int): Indent level. Default: 1.
|
| 43 |
+
|
| 44 |
+
Return:
|
| 45 |
+
(str): Option string for printing.
|
| 46 |
+
"""
|
| 47 |
+
msg = '\n'
|
| 48 |
+
for k, v in opt.items():
|
| 49 |
+
if isinstance(v, dict):
|
| 50 |
+
msg += ' ' * (indent_level * 2) + k + ':['
|
| 51 |
+
msg += dict2str(v, indent_level + 1)
|
| 52 |
+
msg += ' ' * (indent_level * 2) + ']\n'
|
| 53 |
+
else:
|
| 54 |
+
msg += ' ' * (indent_level * 2) + k + ': ' + str(v) + '\n'
|
| 55 |
+
return msg
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
def _postprocess_yml_value(value):
|
| 59 |
+
# None
|
| 60 |
+
if value == '~' or value.lower() == 'none':
|
| 61 |
+
return None
|
| 62 |
+
# bool
|
| 63 |
+
if value.lower() == 'true':
|
| 64 |
+
return True
|
| 65 |
+
elif value.lower() == 'false':
|
| 66 |
+
return False
|
| 67 |
+
# !!float number
|
| 68 |
+
if value.startswith('!!float'):
|
| 69 |
+
return float(value.replace('!!float', ''))
|
| 70 |
+
# number
|
| 71 |
+
if value.isdigit():
|
| 72 |
+
return int(value)
|
| 73 |
+
elif value.replace('.', '', 1).isdigit() and value.count('.') < 2:
|
| 74 |
+
return float(value)
|
| 75 |
+
# list
|
| 76 |
+
if value.startswith('['):
|
| 77 |
+
return eval(value)
|
| 78 |
+
# str
|
| 79 |
+
return value
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
def parse_options(root_path, is_train=True):
|
| 83 |
+
parser = argparse.ArgumentParser()
|
| 84 |
+
parser.add_argument('-opt', type=str, required=True, help='Path to option YAML file.')
|
| 85 |
+
parser.add_argument('--launcher', choices=['none', 'pytorch', 'slurm'], default='none', help='job launcher')
|
| 86 |
+
parser.add_argument('--auto_resume', action='store_true')
|
| 87 |
+
parser.add_argument('--debug', action='store_true')
|
| 88 |
+
parser.add_argument('--local_rank', type=int, default=0)
|
| 89 |
+
parser.add_argument(
|
| 90 |
+
'--force_yml', nargs='+', default=None, help='Force to update yml files. Examples: train:ema_decay=0.999')
|
| 91 |
+
args = parser.parse_args()
|
| 92 |
+
|
| 93 |
+
# parse yml to dict
|
| 94 |
+
with open(args.opt, mode='r') as f:
|
| 95 |
+
opt = yaml.load(f, Loader=ordered_yaml()[0])
|
| 96 |
+
|
| 97 |
+
# distributed settings
|
| 98 |
+
if args.launcher == 'none':
|
| 99 |
+
opt['dist'] = False
|
| 100 |
+
print('Disable distributed.', flush=True)
|
| 101 |
+
else:
|
| 102 |
+
opt['dist'] = True
|
| 103 |
+
if args.launcher == 'slurm' and 'dist_params' in opt:
|
| 104 |
+
init_dist(args.launcher, **opt['dist_params'])
|
| 105 |
+
else:
|
| 106 |
+
init_dist(args.launcher)
|
| 107 |
+
opt['rank'], opt['world_size'] = get_dist_info()
|
| 108 |
+
|
| 109 |
+
# random seed
|
| 110 |
+
seed = opt.get('manual_seed')
|
| 111 |
+
if seed is None:
|
| 112 |
+
seed = random.randint(1, 10000)
|
| 113 |
+
opt['manual_seed'] = seed
|
| 114 |
+
set_random_seed(seed + opt['rank'])
|
| 115 |
+
|
| 116 |
+
# force to update yml options
|
| 117 |
+
if args.force_yml is not None:
|
| 118 |
+
for entry in args.force_yml:
|
| 119 |
+
# now do not support creating new keys
|
| 120 |
+
keys, value = entry.split('=')
|
| 121 |
+
keys, value = keys.strip(), value.strip()
|
| 122 |
+
value = _postprocess_yml_value(value)
|
| 123 |
+
eval_str = 'opt'
|
| 124 |
+
for key in keys.split(':'):
|
| 125 |
+
eval_str += f'["{key}"]'
|
| 126 |
+
eval_str += '=value'
|
| 127 |
+
# using exec function
|
| 128 |
+
exec(eval_str)
|
| 129 |
+
|
| 130 |
+
opt['auto_resume'] = args.auto_resume
|
| 131 |
+
opt['is_train'] = is_train
|
| 132 |
+
|
| 133 |
+
# debug setting
|
| 134 |
+
if args.debug and not opt['name'].startswith('debug'):
|
| 135 |
+
opt['name'] = 'debug_' + opt['name']
|
| 136 |
+
|
| 137 |
+
if opt['num_gpu'] == 'auto':
|
| 138 |
+
opt['num_gpu'] = torch.cuda.device_count()
|
| 139 |
+
|
| 140 |
+
# datasets
|
| 141 |
+
for phase, dataset in opt['datasets'].items():
|
| 142 |
+
# for multiple datasets, e.g., val_1, val_2; test_1, test_2
|
| 143 |
+
phase = phase.split('_')[0]
|
| 144 |
+
dataset['phase'] = phase
|
| 145 |
+
if 'scale' in opt:
|
| 146 |
+
dataset['scale'] = opt['scale']
|
| 147 |
+
if dataset.get('dataroot_gt') is not None:
|
| 148 |
+
dataset['dataroot_gt'] = osp.expanduser(dataset['dataroot_gt'])
|
| 149 |
+
if dataset.get('dataroot_lq') is not None:
|
| 150 |
+
dataset['dataroot_lq'] = osp.expanduser(dataset['dataroot_lq'])
|
| 151 |
+
|
| 152 |
+
# paths
|
| 153 |
+
for key, val in opt['path'].items():
|
| 154 |
+
if (val is not None) and ('resume_state' in key or 'pretrain_network' in key):
|
| 155 |
+
opt['path'][key] = osp.expanduser(val)
|
| 156 |
+
|
| 157 |
+
if is_train:
|
| 158 |
+
experiments_root = osp.join(root_path, 'experiments', opt['name'])
|
| 159 |
+
opt['path']['experiments_root'] = experiments_root
|
| 160 |
+
opt['path']['models'] = osp.join(experiments_root, 'models')
|
| 161 |
+
opt['path']['training_states'] = osp.join(experiments_root, 'training_states')
|
| 162 |
+
opt['path']['log'] = experiments_root
|
| 163 |
+
opt['path']['visualization'] = osp.join(experiments_root, 'visualization')
|
| 164 |
+
|
| 165 |
+
# change some options for debug mode
|
| 166 |
+
if 'debug' in opt['name']:
|
| 167 |
+
if 'val' in opt:
|
| 168 |
+
opt['val']['val_freq'] = 8
|
| 169 |
+
opt['logger']['print_freq'] = 1
|
| 170 |
+
opt['logger']['save_checkpoint_freq'] = 8
|
| 171 |
+
else: # test
|
| 172 |
+
results_root = osp.join(root_path, 'results', opt['name'])
|
| 173 |
+
opt['path']['results_root'] = results_root
|
| 174 |
+
opt['path']['log'] = results_root
|
| 175 |
+
opt['path']['visualization'] = osp.join(results_root, 'visualization')
|
| 176 |
+
|
| 177 |
+
return opt, args
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
@master_only
|
| 181 |
+
def copy_opt_file(opt_file, experiments_root):
|
| 182 |
+
# copy the yml file to the experiment root
|
| 183 |
+
import sys
|
| 184 |
+
import time
|
| 185 |
+
from shutil import copyfile
|
| 186 |
+
cmd = ' '.join(sys.argv)
|
| 187 |
+
filename = osp.join(experiments_root, osp.basename(opt_file))
|
| 188 |
+
copyfile(opt_file, filename)
|
| 189 |
+
|
| 190 |
+
with open(filename, 'r+') as f:
|
| 191 |
+
lines = f.readlines()
|
| 192 |
+
lines.insert(0, f'# GENERATE TIME: {time.asctime()}\n# CMD:\n# {cmd}\n\n')
|
| 193 |
+
f.seek(0)
|
| 194 |
+
f.writelines(lines)
|
basicsr/utils/registry.py
ADDED
|
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Modified from: https://github.com/facebookresearch/fvcore/blob/master/fvcore/common/registry.py # noqa: E501
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
class Registry():
|
| 5 |
+
"""
|
| 6 |
+
The registry that provides name -> object mapping, to support third-party
|
| 7 |
+
users' custom modules.
|
| 8 |
+
|
| 9 |
+
To create a registry (e.g. a backbone registry):
|
| 10 |
+
|
| 11 |
+
.. code-block:: python
|
| 12 |
+
|
| 13 |
+
BACKBONE_REGISTRY = Registry('BACKBONE')
|
| 14 |
+
|
| 15 |
+
To register an object:
|
| 16 |
+
|
| 17 |
+
.. code-block:: python
|
| 18 |
+
|
| 19 |
+
@BACKBONE_REGISTRY.register()
|
| 20 |
+
class MyBackbone():
|
| 21 |
+
...
|
| 22 |
+
|
| 23 |
+
Or:
|
| 24 |
+
|
| 25 |
+
.. code-block:: python
|
| 26 |
+
|
| 27 |
+
BACKBONE_REGISTRY.register(MyBackbone)
|
| 28 |
+
"""
|
| 29 |
+
|
| 30 |
+
def __init__(self, name):
|
| 31 |
+
"""
|
| 32 |
+
Args:
|
| 33 |
+
name (str): the name of this registry
|
| 34 |
+
"""
|
| 35 |
+
self._name = name
|
| 36 |
+
self._obj_map = {}
|
| 37 |
+
|
| 38 |
+
def _do_register(self, name, obj):
|
| 39 |
+
assert (name not in self._obj_map), (f"An object named '{name}' was already registered "
|
| 40 |
+
f"in '{self._name}' registry!")
|
| 41 |
+
self._obj_map[name] = obj
|
| 42 |
+
|
| 43 |
+
def register(self, obj=None):
|
| 44 |
+
"""
|
| 45 |
+
Register the given object under the the name `obj.__name__`.
|
| 46 |
+
Can be used as either a decorator or not.
|
| 47 |
+
See docstring of this class for usage.
|
| 48 |
+
"""
|
| 49 |
+
if obj is None:
|
| 50 |
+
# used as a decorator
|
| 51 |
+
def deco(func_or_class):
|
| 52 |
+
name = func_or_class.__name__
|
| 53 |
+
self._do_register(name, func_or_class)
|
| 54 |
+
return func_or_class
|
| 55 |
+
|
| 56 |
+
return deco
|
| 57 |
+
|
| 58 |
+
# used as a function call
|
| 59 |
+
name = obj.__name__
|
| 60 |
+
self._do_register(name, obj)
|
| 61 |
+
|
| 62 |
+
def get(self, name):
|
| 63 |
+
ret = self._obj_map.get(name)
|
| 64 |
+
if ret is None:
|
| 65 |
+
raise KeyError(f"No object named '{name}' found in '{self._name}' registry!")
|
| 66 |
+
return ret
|
| 67 |
+
|
| 68 |
+
def __contains__(self, name):
|
| 69 |
+
return name in self._obj_map
|
| 70 |
+
|
| 71 |
+
def __iter__(self):
|
| 72 |
+
return iter(self._obj_map.items())
|
| 73 |
+
|
| 74 |
+
def keys(self):
|
| 75 |
+
return self._obj_map.keys()
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
DATASET_REGISTRY = Registry('dataset')
|
| 79 |
+
ARCH_REGISTRY = Registry('arch')
|
| 80 |
+
MODEL_REGISTRY = Registry('model')
|
| 81 |
+
LOSS_REGISTRY = Registry('loss')
|
| 82 |
+
METRIC_REGISTRY = Registry('metric')
|
basicsr/version.py
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# GENERATED VERSION FILE
|
| 2 |
+
# TIME: Thu Sep 22 07:20:35 2022
|
| 3 |
+
__version__ = '1.3.5'
|
| 4 |
+
__gitsha__ = 'cbc9a18'
|
| 5 |
+
version_info = (1, 3, 5)
|
datasets/README.md
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Dwonload the [testing](https://ufile.io/6ek67nf8) datasets and place them here.
|
| 2 |
+
|
experiments/README.md
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Dwonload the pre-trained [models](https://ufile.io/4u0ms0h5) and place them in 'pretrained_models'.
|
| 2 |
+
|
experiments/pretrained_models/README.md
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
Place pretrained models here.
|
options/README.md
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
For more information about testing configuration, please refer to [Configuration](https://github.com/XPixelGroup/BasicSR/blob/master/docs/Config.md).
|
| 2 |
+
|
options/Test/test_DAT_2_x2.yml
ADDED
|
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# general settings
|
| 2 |
+
name: test_DAT_2_x2
|
| 3 |
+
model_type: SRModel
|
| 4 |
+
scale: 2
|
| 5 |
+
num_gpu: 1
|
| 6 |
+
manual_seed: 10
|
| 7 |
+
|
| 8 |
+
datasets:
|
| 9 |
+
test_1: # the 1st test dataset
|
| 10 |
+
task: SR
|
| 11 |
+
name: Set5
|
| 12 |
+
type: PairedImageDataset
|
| 13 |
+
dataroot_gt: datasets/benchmark/Set5/HR
|
| 14 |
+
dataroot_lq: datasets/benchmark/Set5/LR_bicubic/X2
|
| 15 |
+
filename_tmpl: '{}x2'
|
| 16 |
+
io_backend:
|
| 17 |
+
type: disk
|
| 18 |
+
|
| 19 |
+
test_2: # the 2st test dataset
|
| 20 |
+
task: SR
|
| 21 |
+
name: Set14
|
| 22 |
+
type: PairedImageDataset
|
| 23 |
+
dataroot_gt: datasets/benchmark/Set14/HR
|
| 24 |
+
dataroot_lq: datasets/benchmark/Set14/LR_bicubic/X2
|
| 25 |
+
filename_tmpl: '{}x2'
|
| 26 |
+
io_backend:
|
| 27 |
+
type: disk
|
| 28 |
+
|
| 29 |
+
test_3: # the 3st test dataset
|
| 30 |
+
task: SR
|
| 31 |
+
name: B100
|
| 32 |
+
type: PairedImageDataset
|
| 33 |
+
dataroot_gt: datasets/benchmark/B100/HR
|
| 34 |
+
dataroot_lq: datasets/benchmark/B100/LR_bicubic/X2
|
| 35 |
+
filename_tmpl: '{}x2'
|
| 36 |
+
io_backend:
|
| 37 |
+
type: disk
|
| 38 |
+
|
| 39 |
+
test_4: # the 4st test dataset
|
| 40 |
+
task: SR
|
| 41 |
+
name: Urban100
|
| 42 |
+
type: PairedImageDataset
|
| 43 |
+
dataroot_gt: datasets/benchmark/Urban100/HR
|
| 44 |
+
dataroot_lq: datasets/benchmark/Urban100/LR_bicubic/X2
|
| 45 |
+
filename_tmpl: '{}x2'
|
| 46 |
+
io_backend:
|
| 47 |
+
type: disk
|
| 48 |
+
|
| 49 |
+
test_5: # the 5st test dataset
|
| 50 |
+
task: SR
|
| 51 |
+
name: Manga109
|
| 52 |
+
type: PairedImageDataset
|
| 53 |
+
dataroot_gt: datasets/benchmark/Manga109/HR
|
| 54 |
+
dataroot_lq: datasets/benchmark/Manga109/LR_bicubic/X2
|
| 55 |
+
filename_tmpl: '{}_LRBI_x2'
|
| 56 |
+
io_backend:
|
| 57 |
+
type: disk
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
# network structures
|
| 61 |
+
network_g:
|
| 62 |
+
type: DAT
|
| 63 |
+
upscale: 2
|
| 64 |
+
in_chans: 3
|
| 65 |
+
img_size: 64
|
| 66 |
+
img_range: 1.
|
| 67 |
+
split_size: [8,32]
|
| 68 |
+
depth: [6,6,6,6,6,6]
|
| 69 |
+
embed_dim: 180
|
| 70 |
+
num_heads: [6,6,6,6,6,6]
|
| 71 |
+
expansion_factor: 2
|
| 72 |
+
resi_connection: '1conv'
|
| 73 |
+
|
| 74 |
+
# path
|
| 75 |
+
path:
|
| 76 |
+
pretrain_network_g: experiments/pretrained_models/DAT/DAT_2_x2.pth
|
| 77 |
+
strict_load_g: True
|
| 78 |
+
|
| 79 |
+
# validation settings
|
| 80 |
+
val:
|
| 81 |
+
save_img: False
|
| 82 |
+
suffix: ~ # add suffix to saved images, if None, use exp name
|
| 83 |
+
use_chop: False
|
| 84 |
+
|
| 85 |
+
metrics:
|
| 86 |
+
psnr: # metric name, can be arbitrary
|
| 87 |
+
type: calculate_psnr
|
| 88 |
+
crop_border: 2
|
| 89 |
+
test_y_channel: True
|
| 90 |
+
ssim:
|
| 91 |
+
type: calculate_ssim
|
| 92 |
+
crop_border: 2
|
| 93 |
+
test_y_channel: True
|
options/Test/test_DAT_2_x3.yml
ADDED
|
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# general settings
|
| 2 |
+
name: test_DAT_2_x3
|
| 3 |
+
model_type: SRModel
|
| 4 |
+
scale: 3
|
| 5 |
+
num_gpu: 1
|
| 6 |
+
manual_seed: 10
|
| 7 |
+
|
| 8 |
+
datasets:
|
| 9 |
+
test_1: # the 1st test dataset
|
| 10 |
+
task: SR
|
| 11 |
+
name: Set5
|
| 12 |
+
type: PairedImageDataset
|
| 13 |
+
dataroot_gt: datasets/benchmark/Set5/HR
|
| 14 |
+
dataroot_lq: datasets/benchmark/Set5/LR_bicubic/X3
|
| 15 |
+
filename_tmpl: '{}x3'
|
| 16 |
+
io_backend:
|
| 17 |
+
type: disk
|
| 18 |
+
|
| 19 |
+
test_2: # the 2st test dataset
|
| 20 |
+
task: SR
|
| 21 |
+
name: Set14
|
| 22 |
+
type: PairedImageDataset
|
| 23 |
+
dataroot_gt: datasets/benchmark/Set14/HR
|
| 24 |
+
dataroot_lq: datasets/benchmark/Set14/LR_bicubic/X3
|
| 25 |
+
filename_tmpl: '{}x3'
|
| 26 |
+
io_backend:
|
| 27 |
+
type: disk
|
| 28 |
+
|
| 29 |
+
test_3: # the 3st test dataset
|
| 30 |
+
task: SR
|
| 31 |
+
name: B100
|
| 32 |
+
type: PairedImageDataset
|
| 33 |
+
dataroot_gt: datasets/benchmark/B100/HR
|
| 34 |
+
dataroot_lq: datasets/benchmark/B100/LR_bicubic/X3
|
| 35 |
+
filename_tmpl: '{}x3'
|
| 36 |
+
io_backend:
|
| 37 |
+
type: disk
|
| 38 |
+
|
| 39 |
+
test_4: # the 4st test dataset
|
| 40 |
+
task: SR
|
| 41 |
+
name: Urban100
|
| 42 |
+
type: PairedImageDataset
|
| 43 |
+
dataroot_gt: datasets/benchmark/Urban100/HR
|
| 44 |
+
dataroot_lq: datasets/benchmark/Urban100/LR_bicubic/X3
|
| 45 |
+
filename_tmpl: '{}x3'
|
| 46 |
+
io_backend:
|
| 47 |
+
type: disk
|
| 48 |
+
|
| 49 |
+
test_5: # the 5st test dataset
|
| 50 |
+
task: SR
|
| 51 |
+
name: Manga109
|
| 52 |
+
type: PairedImageDataset
|
| 53 |
+
dataroot_gt: datasets/benchmark/Manga109/HR
|
| 54 |
+
dataroot_lq: datasets/benchmark/Manga109/LR_bicubic/X3
|
| 55 |
+
filename_tmpl: '{}_LRBI_x3'
|
| 56 |
+
io_backend:
|
| 57 |
+
type: disk
|
| 58 |
+
|
| 59 |
+
# network structures
|
| 60 |
+
network_g:
|
| 61 |
+
type: DAT
|
| 62 |
+
upscale: 3
|
| 63 |
+
in_chans: 3
|
| 64 |
+
img_size: 64
|
| 65 |
+
img_range: 1.
|
| 66 |
+
split_size: [8,32]
|
| 67 |
+
depth: [6,6,6,6,6,6]
|
| 68 |
+
embed_dim: 180
|
| 69 |
+
num_heads: [6,6,6,6,6,6]
|
| 70 |
+
expansion_factor: 2
|
| 71 |
+
resi_connection: '1conv'
|
| 72 |
+
|
| 73 |
+
# path
|
| 74 |
+
path:
|
| 75 |
+
pretrain_network_g: experiments/pretrained_models/DAT/DAT_2_x3.pth
|
| 76 |
+
strict_load_g: True
|
| 77 |
+
|
| 78 |
+
# validation settings
|
| 79 |
+
val:
|
| 80 |
+
save_img: False
|
| 81 |
+
suffix: ~ # add suffix to saved images, if None, use exp name
|
| 82 |
+
use_chop: False
|
| 83 |
+
|
| 84 |
+
metrics:
|
| 85 |
+
psnr: # metric name, can be arbitrary
|
| 86 |
+
type: calculate_psnr
|
| 87 |
+
crop_border: 3
|
| 88 |
+
test_y_channel: True
|
| 89 |
+
ssim:
|
| 90 |
+
type: calculate_ssim
|
| 91 |
+
crop_border: 3
|
| 92 |
+
test_y_channel: True
|
options/Test/test_DAT_2_x4.yml
ADDED
|
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# general settings
|
| 2 |
+
name: test_DAT_2_x4
|
| 3 |
+
model_type: SRModel
|
| 4 |
+
scale: 4
|
| 5 |
+
num_gpu: 1
|
| 6 |
+
manual_seed: 10
|
| 7 |
+
|
| 8 |
+
datasets:
|
| 9 |
+
test_1: # the 1st test dataset
|
| 10 |
+
task: SR
|
| 11 |
+
name: Set5
|
| 12 |
+
type: PairedImageDataset
|
| 13 |
+
dataroot_gt: datasets/benchmark/Set5/HR
|
| 14 |
+
dataroot_lq: datasets/benchmark/Set5/LR_bicubic/X4
|
| 15 |
+
filename_tmpl: '{}x4'
|
| 16 |
+
io_backend:
|
| 17 |
+
type: disk
|
| 18 |
+
|
| 19 |
+
test_2: # the 2st test dataset
|
| 20 |
+
task: SR
|
| 21 |
+
name: Set14
|
| 22 |
+
type: PairedImageDataset
|
| 23 |
+
dataroot_gt: datasets/benchmark/Set14/HR
|
| 24 |
+
dataroot_lq: datasets/benchmark/Set14/LR_bicubic/X4
|
| 25 |
+
filename_tmpl: '{}x4'
|
| 26 |
+
io_backend:
|
| 27 |
+
type: disk
|
| 28 |
+
|
| 29 |
+
test_3: # the 3st test dataset
|
| 30 |
+
task: SR
|
| 31 |
+
name: B100
|
| 32 |
+
type: PairedImageDataset
|
| 33 |
+
dataroot_gt: datasets/benchmark/B100/HR
|
| 34 |
+
dataroot_lq: datasets/benchmark/B100/LR_bicubic/X4
|
| 35 |
+
filename_tmpl: '{}x4'
|
| 36 |
+
io_backend:
|
| 37 |
+
type: disk
|
| 38 |
+
|
| 39 |
+
test_4: # the 4st test dataset
|
| 40 |
+
task: SR
|
| 41 |
+
name: Urban100
|
| 42 |
+
type: PairedImageDataset
|
| 43 |
+
dataroot_gt: datasets/benchmark/Urban100/HR
|
| 44 |
+
dataroot_lq: datasets/benchmark/Urban100/LR_bicubic/X4
|
| 45 |
+
filename_tmpl: '{}x4'
|
| 46 |
+
io_backend:
|
| 47 |
+
type: disk
|
| 48 |
+
|
| 49 |
+
test_5: # the 5st test dataset
|
| 50 |
+
task: SR
|
| 51 |
+
name: Manga109
|
| 52 |
+
type: PairedImageDataset
|
| 53 |
+
dataroot_gt: datasets/benchmark/Manga109/HR
|
| 54 |
+
dataroot_lq: datasets/benchmark/Manga109/LR_bicubic/X4
|
| 55 |
+
filename_tmpl: '{}_LRBI_x4'
|
| 56 |
+
io_backend:
|
| 57 |
+
type: disk
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
# network structures
|
| 61 |
+
network_g:
|
| 62 |
+
type: DAT
|
| 63 |
+
upscale: 4
|
| 64 |
+
in_chans: 3
|
| 65 |
+
img_size: 64
|
| 66 |
+
img_range: 1.
|
| 67 |
+
split_size: [8,32]
|
| 68 |
+
depth: [6,6,6,6,6,6]
|
| 69 |
+
embed_dim: 180
|
| 70 |
+
num_heads: [6,6,6,6,6,6]
|
| 71 |
+
expansion_factor: 2
|
| 72 |
+
resi_connection: '1conv'
|
| 73 |
+
|
| 74 |
+
# path
|
| 75 |
+
path:
|
| 76 |
+
pretrain_network_g: experiments/pretrained_models/DAT/DAT_2_x4.pth
|
| 77 |
+
strict_load_g: True
|
| 78 |
+
|
| 79 |
+
# validation settings
|
| 80 |
+
val:
|
| 81 |
+
save_img: False
|
| 82 |
+
suffix: ~ # add suffix to saved images, if None, use exp name
|
| 83 |
+
use_chop: False
|
| 84 |
+
|
| 85 |
+
metrics:
|
| 86 |
+
psnr: # metric name, can be arbitrary
|
| 87 |
+
type: calculate_psnr
|
| 88 |
+
crop_border: 4
|
| 89 |
+
test_y_channel: True
|
| 90 |
+
ssim:
|
| 91 |
+
type: calculate_ssim
|
| 92 |
+
crop_border: 4
|
| 93 |
+
test_y_channel: True
|
options/Test/test_DAT_L_x2.yml
ADDED
|
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# general settings
|
| 2 |
+
name: test_DAT_L_x2
|
| 3 |
+
model_type: SRModel
|
| 4 |
+
scale: 2
|
| 5 |
+
num_gpu: 1
|
| 6 |
+
manual_seed: 10
|
| 7 |
+
|
| 8 |
+
datasets:
|
| 9 |
+
test_1: # the 1st test dataset
|
| 10 |
+
task: SR
|
| 11 |
+
name: Set5
|
| 12 |
+
type: PairedImageDataset
|
| 13 |
+
dataroot_gt: datasets/benchmark/Set5/HR
|
| 14 |
+
dataroot_lq: datasets/benchmark/Set5/LR_bicubic/X2
|
| 15 |
+
filename_tmpl: '{}x2'
|
| 16 |
+
io_backend:
|
| 17 |
+
type: disk
|
| 18 |
+
|
| 19 |
+
test_2: # the 2st test dataset
|
| 20 |
+
task: SR
|
| 21 |
+
name: Set14
|
| 22 |
+
type: PairedImageDataset
|
| 23 |
+
dataroot_gt: datasets/benchmark/Set14/HR
|
| 24 |
+
dataroot_lq: datasets/benchmark/Set14/LR_bicubic/X2
|
| 25 |
+
filename_tmpl: '{}x2'
|
| 26 |
+
io_backend:
|
| 27 |
+
type: disk
|
| 28 |
+
|
| 29 |
+
test_3: # the 3st test dataset
|
| 30 |
+
task: SR
|
| 31 |
+
name: B100
|
| 32 |
+
type: PairedImageDataset
|
| 33 |
+
dataroot_gt: datasets/benchmark/B100/HR
|
| 34 |
+
dataroot_lq: datasets/benchmark/B100/LR_bicubic/X2
|
| 35 |
+
filename_tmpl: '{}x2'
|
| 36 |
+
io_backend:
|
| 37 |
+
type: disk
|
| 38 |
+
|
| 39 |
+
test_4: # the 4st test dataset
|
| 40 |
+
task: SR
|
| 41 |
+
name: Urban100
|
| 42 |
+
type: PairedImageDataset
|
| 43 |
+
dataroot_gt: datasets/benchmark/Urban100/HR
|
| 44 |
+
dataroot_lq: datasets/benchmark/Urban100/LR_bicubic/X2
|
| 45 |
+
filename_tmpl: '{}x2'
|
| 46 |
+
io_backend:
|
| 47 |
+
type: disk
|
| 48 |
+
|
| 49 |
+
test_5: # the 5st test dataset
|
| 50 |
+
task: SR
|
| 51 |
+
name: Manga109
|
| 52 |
+
type: PairedImageDataset
|
| 53 |
+
dataroot_gt: datasets/benchmark/Manga109/HR
|
| 54 |
+
dataroot_lq: datasets/benchmark/Manga109/LR_bicubic/X2
|
| 55 |
+
filename_tmpl: '{}_LRBI_x2'
|
| 56 |
+
io_backend:
|
| 57 |
+
type: disk
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
# network structures
|
| 61 |
+
network_g:
|
| 62 |
+
type: DAT
|
| 63 |
+
upscale: 2
|
| 64 |
+
in_chans: 3
|
| 65 |
+
img_size: 64
|
| 66 |
+
img_range: 1.
|
| 67 |
+
split_size: [8,32]
|
| 68 |
+
depth: [6,6,6,6,6,6]
|
| 69 |
+
embed_dim: 180
|
| 70 |
+
num_heads: [6,6,6,6,6,6]
|
| 71 |
+
expansion_factor: 4
|
| 72 |
+
resi_connection: '1conv'
|
| 73 |
+
|
| 74 |
+
# path
|
| 75 |
+
path:
|
| 76 |
+
pretrain_network_g: experiments/pretrained_models/DAT/DAT_L_x2.pth
|
| 77 |
+
strict_load_g: True
|
| 78 |
+
|
| 79 |
+
# validation settings
|
| 80 |
+
val:
|
| 81 |
+
save_img: False
|
| 82 |
+
suffix: ~ # add suffix to saved images, if None, use exp name
|
| 83 |
+
use_chop: False
|
| 84 |
+
|
| 85 |
+
metrics:
|
| 86 |
+
psnr: # metric name, can be arbitrary
|
| 87 |
+
type: calculate_psnr
|
| 88 |
+
crop_border: 2
|
| 89 |
+
test_y_channel: True
|
| 90 |
+
ssim:
|
| 91 |
+
type: calculate_ssim
|
| 92 |
+
crop_border: 2
|
| 93 |
+
test_y_channel: True
|
options/Test/test_DAT_L_x3.yml
ADDED
|
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# general settings
|
| 2 |
+
name: test_DAT_L_x3
|
| 3 |
+
model_type: SRModel
|
| 4 |
+
scale: 3
|
| 5 |
+
num_gpu: 1
|
| 6 |
+
manual_seed: 10
|
| 7 |
+
|
| 8 |
+
datasets:
|
| 9 |
+
test_1: # the 1st test dataset
|
| 10 |
+
task: SR
|
| 11 |
+
name: Set5
|
| 12 |
+
type: PairedImageDataset
|
| 13 |
+
dataroot_gt: datasets/benchmark/Set5/HR
|
| 14 |
+
dataroot_lq: datasets/benchmark/Set5/LR_bicubic/X3
|
| 15 |
+
filename_tmpl: '{}x3'
|
| 16 |
+
io_backend:
|
| 17 |
+
type: disk
|
| 18 |
+
|
| 19 |
+
test_2: # the 2st test dataset
|
| 20 |
+
task: SR
|
| 21 |
+
name: Set14
|
| 22 |
+
type: PairedImageDataset
|
| 23 |
+
dataroot_gt: datasets/benchmark/Set14/HR
|
| 24 |
+
dataroot_lq: datasets/benchmark/Set14/LR_bicubic/X3
|
| 25 |
+
filename_tmpl: '{}x3'
|
| 26 |
+
io_backend:
|
| 27 |
+
type: disk
|
| 28 |
+
|
| 29 |
+
test_3: # the 3st test dataset
|
| 30 |
+
task: SR
|
| 31 |
+
name: B100
|
| 32 |
+
type: PairedImageDataset
|
| 33 |
+
dataroot_gt: datasets/benchmark/B100/HR
|
| 34 |
+
dataroot_lq: datasets/benchmark/B100/LR_bicubic/X3
|
| 35 |
+
filename_tmpl: '{}x3'
|
| 36 |
+
io_backend:
|
| 37 |
+
type: disk
|
| 38 |
+
|
| 39 |
+
test_4: # the 4st test dataset
|
| 40 |
+
task: SR
|
| 41 |
+
name: Urban100
|
| 42 |
+
type: PairedImageDataset
|
| 43 |
+
dataroot_gt: datasets/benchmark/Urban100/HR
|
| 44 |
+
dataroot_lq: datasets/benchmark/Urban100/LR_bicubic/X3
|
| 45 |
+
filename_tmpl: '{}x3'
|
| 46 |
+
io_backend:
|
| 47 |
+
type: disk
|
| 48 |
+
|
| 49 |
+
test_5: # the 5st test dataset
|
| 50 |
+
task: SR
|
| 51 |
+
name: Manga109
|
| 52 |
+
type: PairedImageDataset
|
| 53 |
+
dataroot_gt: datasets/benchmark/Manga109/HR
|
| 54 |
+
dataroot_lq: datasets/benchmark/Manga109/LR_bicubic/X3
|
| 55 |
+
filename_tmpl: '{}_LRBI_x3'
|
| 56 |
+
io_backend:
|
| 57 |
+
type: disk
|
| 58 |
+
|
| 59 |
+
# network structures
|
| 60 |
+
network_g:
|
| 61 |
+
type: DAT
|
| 62 |
+
upscale: 3
|
| 63 |
+
in_chans: 3
|
| 64 |
+
img_size: 64
|
| 65 |
+
img_range: 1.
|
| 66 |
+
split_size: [8,32]
|
| 67 |
+
depth: [6,6,6,6,6,6]
|
| 68 |
+
embed_dim: 180
|
| 69 |
+
num_heads: [6,6,6,6,6,6]
|
| 70 |
+
expansion_factor: 4
|
| 71 |
+
resi_connection: '1conv'
|
| 72 |
+
|
| 73 |
+
# path
|
| 74 |
+
path:
|
| 75 |
+
pretrain_network_g: experiments/pretrained_models/DAT/DAT_L_x3.pth
|
| 76 |
+
strict_load_g: True
|
| 77 |
+
|
| 78 |
+
# validation settings
|
| 79 |
+
val:
|
| 80 |
+
save_img: False
|
| 81 |
+
suffix: ~ # add suffix to saved images, if None, use exp name
|
| 82 |
+
use_chop: False
|
| 83 |
+
|
| 84 |
+
metrics:
|
| 85 |
+
psnr: # metric name, can be arbitrary
|
| 86 |
+
type: calculate_psnr
|
| 87 |
+
crop_border: 3
|
| 88 |
+
test_y_channel: True
|
| 89 |
+
ssim:
|
| 90 |
+
type: calculate_ssim
|
| 91 |
+
crop_border: 3
|
| 92 |
+
test_y_channel: True
|
options/Test/test_DAT_L_x4.yml
ADDED
|
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# general settings
|
| 2 |
+
name: test_DAT_L_x4
|
| 3 |
+
model_type: SRModel
|
| 4 |
+
scale: 4
|
| 5 |
+
num_gpu: 1
|
| 6 |
+
manual_seed: 10
|
| 7 |
+
|
| 8 |
+
datasets:
|
| 9 |
+
test_1: # the 1st test dataset
|
| 10 |
+
task: SR
|
| 11 |
+
name: Set5
|
| 12 |
+
type: PairedImageDataset
|
| 13 |
+
dataroot_gt: datasets/benchmark/Set5/HR
|
| 14 |
+
dataroot_lq: datasets/benchmark/Set5/LR_bicubic/X4
|
| 15 |
+
filename_tmpl: '{}x4'
|
| 16 |
+
io_backend:
|
| 17 |
+
type: disk
|
| 18 |
+
|
| 19 |
+
test_2: # the 2st test dataset
|
| 20 |
+
task: SR
|
| 21 |
+
name: Set14
|
| 22 |
+
type: PairedImageDataset
|
| 23 |
+
dataroot_gt: datasets/benchmark/Set14/HR
|
| 24 |
+
dataroot_lq: datasets/benchmark/Set14/LR_bicubic/X4
|
| 25 |
+
filename_tmpl: '{}x4'
|
| 26 |
+
io_backend:
|
| 27 |
+
type: disk
|
| 28 |
+
|
| 29 |
+
test_3: # the 3st test dataset
|
| 30 |
+
task: SR
|
| 31 |
+
name: B100
|
| 32 |
+
type: PairedImageDataset
|
| 33 |
+
dataroot_gt: datasets/benchmark/B100/HR
|
| 34 |
+
dataroot_lq: datasets/benchmark/B100/LR_bicubic/X4
|
| 35 |
+
filename_tmpl: '{}x4'
|
| 36 |
+
io_backend:
|
| 37 |
+
type: disk
|
| 38 |
+
|
| 39 |
+
test_4: # the 4st test dataset
|
| 40 |
+
task: SR
|
| 41 |
+
name: Urban100
|
| 42 |
+
type: PairedImageDataset
|
| 43 |
+
dataroot_gt: datasets/benchmark/Urban100/HR
|
| 44 |
+
dataroot_lq: datasets/benchmark/Urban100/LR_bicubic/X4
|
| 45 |
+
filename_tmpl: '{}x4'
|
| 46 |
+
io_backend:
|
| 47 |
+
type: disk
|
| 48 |
+
|
| 49 |
+
test_5: # the 5st test dataset
|
| 50 |
+
task: SR
|
| 51 |
+
name: Manga109
|
| 52 |
+
type: PairedImageDataset
|
| 53 |
+
dataroot_gt: datasets/benchmark/Manga109/HR
|
| 54 |
+
dataroot_lq: datasets/benchmark/Manga109/LR_bicubic/X4
|
| 55 |
+
filename_tmpl: '{}_LRBI_x4'
|
| 56 |
+
io_backend:
|
| 57 |
+
type: disk
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
# network structures
|
| 61 |
+
network_g:
|
| 62 |
+
type: DAT
|
| 63 |
+
upscale: 4
|
| 64 |
+
in_chans: 3
|
| 65 |
+
img_size: 64
|
| 66 |
+
img_range: 1.
|
| 67 |
+
split_size: [8,32]
|
| 68 |
+
depth: [6,6,6,6,6,6]
|
| 69 |
+
embed_dim: 180
|
| 70 |
+
num_heads: [6,6,6,6,6,6]
|
| 71 |
+
expansion_factor: 4
|
| 72 |
+
resi_connection: '1conv'
|
| 73 |
+
|
| 74 |
+
# path
|
| 75 |
+
path:
|
| 76 |
+
pretrain_network_g: experiments/pretrained_models/DAT/DAT_L_x4.pth
|
| 77 |
+
strict_load_g: True
|
| 78 |
+
|
| 79 |
+
# validation settings
|
| 80 |
+
val:
|
| 81 |
+
save_img: False
|
| 82 |
+
suffix: ~ # add suffix to saved images, if None, use exp name
|
| 83 |
+
use_chop: False
|
| 84 |
+
|
| 85 |
+
metrics:
|
| 86 |
+
psnr: # metric name, can be arbitrary
|
| 87 |
+
type: calculate_psnr
|
| 88 |
+
crop_border: 4
|
| 89 |
+
test_y_channel: True
|
| 90 |
+
ssim:
|
| 91 |
+
type: calculate_ssim
|
| 92 |
+
crop_border: 4
|
| 93 |
+
test_y_channel: True
|
options/Test/test_DAT_x2.yml
ADDED
|
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# general settings
|
| 2 |
+
name: test_DAT_x2
|
| 3 |
+
model_type: SRModel
|
| 4 |
+
scale: 2
|
| 5 |
+
num_gpu: 1
|
| 6 |
+
manual_seed: 10
|
| 7 |
+
|
| 8 |
+
datasets:
|
| 9 |
+
test_1: # the 1st test dataset
|
| 10 |
+
task: SR
|
| 11 |
+
name: Set5
|
| 12 |
+
type: PairedImageDataset
|
| 13 |
+
dataroot_gt: datasets/benchmark/Set5/HR
|
| 14 |
+
dataroot_lq: datasets/benchmark/Set5/LR_bicubic/X2
|
| 15 |
+
filename_tmpl: '{}x2'
|
| 16 |
+
io_backend:
|
| 17 |
+
type: disk
|
| 18 |
+
|
| 19 |
+
test_2: # the 2st test dataset
|
| 20 |
+
task: SR
|
| 21 |
+
name: Set14
|
| 22 |
+
type: PairedImageDataset
|
| 23 |
+
dataroot_gt: datasets/benchmark/Set14/HR
|
| 24 |
+
dataroot_lq: datasets/benchmark/Set14/LR_bicubic/X2
|
| 25 |
+
filename_tmpl: '{}x2'
|
| 26 |
+
io_backend:
|
| 27 |
+
type: disk
|
| 28 |
+
|
| 29 |
+
test_3: # the 3st test dataset
|
| 30 |
+
task: SR
|
| 31 |
+
name: B100
|
| 32 |
+
type: PairedImageDataset
|
| 33 |
+
dataroot_gt: datasets/benchmark/B100/HR
|
| 34 |
+
dataroot_lq: datasets/benchmark/B100/LR_bicubic/X2
|
| 35 |
+
filename_tmpl: '{}x2'
|
| 36 |
+
io_backend:
|
| 37 |
+
type: disk
|
| 38 |
+
|
| 39 |
+
test_4: # the 4st test dataset
|
| 40 |
+
task: SR
|
| 41 |
+
name: Urban100
|
| 42 |
+
type: PairedImageDataset
|
| 43 |
+
dataroot_gt: datasets/benchmark/Urban100/HR
|
| 44 |
+
dataroot_lq: datasets/benchmark/Urban100/LR_bicubic/X2
|
| 45 |
+
filename_tmpl: '{}x2'
|
| 46 |
+
io_backend:
|
| 47 |
+
type: disk
|
| 48 |
+
|
| 49 |
+
test_5: # the 5st test dataset
|
| 50 |
+
task: SR
|
| 51 |
+
name: Manga109
|
| 52 |
+
type: PairedImageDataset
|
| 53 |
+
dataroot_gt: datasets/benchmark/Manga109/HR
|
| 54 |
+
dataroot_lq: datasets/benchmark/Manga109/LR_bicubic/X2
|
| 55 |
+
filename_tmpl: '{}_LRBI_x2'
|
| 56 |
+
io_backend:
|
| 57 |
+
type: disk
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
# network structures
|
| 61 |
+
network_g:
|
| 62 |
+
type: DAT
|
| 63 |
+
upscale: 2
|
| 64 |
+
in_chans: 3
|
| 65 |
+
img_size: 64
|
| 66 |
+
img_range: 1.
|
| 67 |
+
split_size: [8,16]
|
| 68 |
+
depth: [6,6,6,6,6,6]
|
| 69 |
+
embed_dim: 180
|
| 70 |
+
num_heads: [6,6,6,6,6,6]
|
| 71 |
+
expansion_factor: 2
|
| 72 |
+
resi_connection: '1conv'
|
| 73 |
+
|
| 74 |
+
# path
|
| 75 |
+
path:
|
| 76 |
+
pretrain_network_g: experiments/pretrained_models/DAT/DAT_x2.pth
|
| 77 |
+
strict_load_g: True
|
| 78 |
+
|
| 79 |
+
# validation settings
|
| 80 |
+
val:
|
| 81 |
+
save_img: False
|
| 82 |
+
suffix: ~ # add suffix to saved images, if None, use exp name
|
| 83 |
+
use_chop: False
|
| 84 |
+
|
| 85 |
+
metrics:
|
| 86 |
+
psnr: # metric name, can be arbitrary
|
| 87 |
+
type: calculate_psnr
|
| 88 |
+
crop_border: 2
|
| 89 |
+
test_y_channel: True
|
| 90 |
+
ssim:
|
| 91 |
+
type: calculate_ssim
|
| 92 |
+
crop_border: 2
|
| 93 |
+
test_y_channel: True
|
options/Test/test_DAT_x3.yml
ADDED
|
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# general settings
|
| 2 |
+
name: test_DAT_x3
|
| 3 |
+
model_type: SRModel
|
| 4 |
+
scale: 3
|
| 5 |
+
num_gpu: 1
|
| 6 |
+
manual_seed: 10
|
| 7 |
+
|
| 8 |
+
datasets:
|
| 9 |
+
test_1: # the 1st test dataset
|
| 10 |
+
task: SR
|
| 11 |
+
name: Set5
|
| 12 |
+
type: PairedImageDataset
|
| 13 |
+
dataroot_gt: datasets/benchmark/Set5/HR
|
| 14 |
+
dataroot_lq: datasets/benchmark/Set5/LR_bicubic/X3
|
| 15 |
+
filename_tmpl: '{}x3'
|
| 16 |
+
io_backend:
|
| 17 |
+
type: disk
|
| 18 |
+
|
| 19 |
+
test_2: # the 2st test dataset
|
| 20 |
+
task: SR
|
| 21 |
+
name: Set14
|
| 22 |
+
type: PairedImageDataset
|
| 23 |
+
dataroot_gt: datasets/benchmark/Set14/HR
|
| 24 |
+
dataroot_lq: datasets/benchmark/Set14/LR_bicubic/X3
|
| 25 |
+
filename_tmpl: '{}x3'
|
| 26 |
+
io_backend:
|
| 27 |
+
type: disk
|
| 28 |
+
|
| 29 |
+
test_3: # the 3st test dataset
|
| 30 |
+
task: SR
|
| 31 |
+
name: B100
|
| 32 |
+
type: PairedImageDataset
|
| 33 |
+
dataroot_gt: datasets/benchmark/B100/HR
|
| 34 |
+
dataroot_lq: datasets/benchmark/B100/LR_bicubic/X3
|
| 35 |
+
filename_tmpl: '{}x3'
|
| 36 |
+
io_backend:
|
| 37 |
+
type: disk
|
| 38 |
+
|
| 39 |
+
test_4: # the 4st test dataset
|
| 40 |
+
task: SR
|
| 41 |
+
name: Urban100
|
| 42 |
+
type: PairedImageDataset
|
| 43 |
+
dataroot_gt: datasets/benchmark/Urban100/HR
|
| 44 |
+
dataroot_lq: datasets/benchmark/Urban100/LR_bicubic/X3
|
| 45 |
+
filename_tmpl: '{}x3'
|
| 46 |
+
io_backend:
|
| 47 |
+
type: disk
|
| 48 |
+
|
| 49 |
+
test_5: # the 5st test dataset
|
| 50 |
+
task: SR
|
| 51 |
+
name: Manga109
|
| 52 |
+
type: PairedImageDataset
|
| 53 |
+
dataroot_gt: datasets/benchmark/Manga109/HR
|
| 54 |
+
dataroot_lq: datasets/benchmark/Manga109/LR_bicubic/X3
|
| 55 |
+
filename_tmpl: '{}_LRBI_x3'
|
| 56 |
+
io_backend:
|
| 57 |
+
type: disk
|
| 58 |
+
|
| 59 |
+
# network structures
|
| 60 |
+
network_g:
|
| 61 |
+
type: DAT
|
| 62 |
+
upscale: 3
|
| 63 |
+
in_chans: 3
|
| 64 |
+
img_size: 64
|
| 65 |
+
img_range: 1.
|
| 66 |
+
split_size: [8,16]
|
| 67 |
+
depth: [6,6,6,6,6,6]
|
| 68 |
+
embed_dim: 180
|
| 69 |
+
num_heads: [6,6,6,6,6,6]
|
| 70 |
+
expansion_factor: 2
|
| 71 |
+
resi_connection: '1conv'
|
| 72 |
+
|
| 73 |
+
# path
|
| 74 |
+
path:
|
| 75 |
+
pretrain_network_g: experiments/pretrained_models/DAT/DAT_x3.pth
|
| 76 |
+
strict_load_g: True
|
| 77 |
+
|
| 78 |
+
# validation settings
|
| 79 |
+
val:
|
| 80 |
+
save_img: False
|
| 81 |
+
suffix: ~ # add suffix to saved images, if None, use exp name
|
| 82 |
+
use_chop: False
|
| 83 |
+
|
| 84 |
+
metrics:
|
| 85 |
+
psnr: # metric name, can be arbitrary
|
| 86 |
+
type: calculate_psnr
|
| 87 |
+
crop_border: 3
|
| 88 |
+
test_y_channel: True
|
| 89 |
+
ssim:
|
| 90 |
+
type: calculate_ssim
|
| 91 |
+
crop_border: 3
|
| 92 |
+
test_y_channel: True
|
options/Test/test_DAT_x4.yml
ADDED
|
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# general settings
|
| 2 |
+
name: test_DAT_x4
|
| 3 |
+
model_type: SRModel
|
| 4 |
+
scale: 4
|
| 5 |
+
num_gpu: 1
|
| 6 |
+
manual_seed: 10
|
| 7 |
+
|
| 8 |
+
datasets:
|
| 9 |
+
test_1: # the 1st test dataset
|
| 10 |
+
task: SR
|
| 11 |
+
name: Set5
|
| 12 |
+
type: PairedImageDataset
|
| 13 |
+
dataroot_gt: datasets/benchmark/Set5/HR
|
| 14 |
+
dataroot_lq: datasets/benchmark/Set5/LR_bicubic/X4
|
| 15 |
+
filename_tmpl: '{}x4'
|
| 16 |
+
io_backend:
|
| 17 |
+
type: disk
|
| 18 |
+
|
| 19 |
+
test_2: # the 2st test dataset
|
| 20 |
+
task: SR
|
| 21 |
+
name: Set14
|
| 22 |
+
type: PairedImageDataset
|
| 23 |
+
dataroot_gt: datasets/benchmark/Set14/HR
|
| 24 |
+
dataroot_lq: datasets/benchmark/Set14/LR_bicubic/X4
|
| 25 |
+
filename_tmpl: '{}x4'
|
| 26 |
+
io_backend:
|
| 27 |
+
type: disk
|
| 28 |
+
|
| 29 |
+
test_3: # the 3st test dataset
|
| 30 |
+
task: SR
|
| 31 |
+
name: B100
|
| 32 |
+
type: PairedImageDataset
|
| 33 |
+
dataroot_gt: datasets/benchmark/B100/HR
|
| 34 |
+
dataroot_lq: datasets/benchmark/B100/LR_bicubic/X4
|
| 35 |
+
filename_tmpl: '{}x4'
|
| 36 |
+
io_backend:
|
| 37 |
+
type: disk
|
| 38 |
+
|
| 39 |
+
test_4: # the 4st test dataset
|
| 40 |
+
task: SR
|
| 41 |
+
name: Urban100
|
| 42 |
+
type: PairedImageDataset
|
| 43 |
+
dataroot_gt: datasets/benchmark/Urban100/HR
|
| 44 |
+
dataroot_lq: datasets/benchmark/Urban100/LR_bicubic/X4
|
| 45 |
+
filename_tmpl: '{}x4'
|
| 46 |
+
io_backend:
|
| 47 |
+
type: disk
|
| 48 |
+
|
| 49 |
+
test_5: # the 5st test dataset
|
| 50 |
+
task: SR
|
| 51 |
+
name: Manga109
|
| 52 |
+
type: PairedImageDataset
|
| 53 |
+
dataroot_gt: datasets/benchmark/Manga109/HR
|
| 54 |
+
dataroot_lq: datasets/benchmark/Manga109/LR_bicubic/X4
|
| 55 |
+
filename_tmpl: '{}_LRBI_x4'
|
| 56 |
+
io_backend:
|
| 57 |
+
type: disk
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
# network structures
|
| 61 |
+
network_g:
|
| 62 |
+
type: DAT
|
| 63 |
+
upscale: 4
|
| 64 |
+
in_chans: 3
|
| 65 |
+
img_size: 64
|
| 66 |
+
img_range: 1.
|
| 67 |
+
split_size: [8,16]
|
| 68 |
+
depth: [6,6,6,6,6,6]
|
| 69 |
+
embed_dim: 180
|
| 70 |
+
num_heads: [6,6,6,6,6,6]
|
| 71 |
+
expansion_factor: 2
|
| 72 |
+
resi_connection: '1conv'
|
| 73 |
+
|
| 74 |
+
# path
|
| 75 |
+
path:
|
| 76 |
+
pretrain_network_g: experiments/pretrained_models/DAT/DAT_x4.pth
|
| 77 |
+
strict_load_g: True
|
| 78 |
+
|
| 79 |
+
# validation settings
|
| 80 |
+
val:
|
| 81 |
+
save_img: False
|
| 82 |
+
suffix: ~ # add suffix to saved images, if None, use exp name
|
| 83 |
+
use_chop: False
|
| 84 |
+
|
| 85 |
+
metrics:
|
| 86 |
+
psnr: # metric name, can be arbitrary
|
| 87 |
+
type: calculate_psnr
|
| 88 |
+
crop_border: 4
|
| 89 |
+
test_y_channel: True
|
| 90 |
+
ssim:
|
| 91 |
+
type: calculate_ssim
|
| 92 |
+
crop_border: 4
|
| 93 |
+
test_y_channel: True
|
requirements.txt
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
addict
|
| 2 |
+
future
|
| 3 |
+
lmdb
|
| 4 |
+
numpy>=1.17
|
| 5 |
+
opencv-python
|
| 6 |
+
Pillow
|
| 7 |
+
pyyaml
|
| 8 |
+
requests
|
| 9 |
+
scikit-image
|
| 10 |
+
scipy
|
| 11 |
+
tb-nightly
|
| 12 |
+
torch>=1.7
|
| 13 |
+
torchvision
|
| 14 |
+
tqdm
|
| 15 |
+
yapf
|
| 16 |
+
timm
|
| 17 |
+
einops
|
| 18 |
+
h5py
|
results/README.md
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
The testing results.
|
setup.py
ADDED
|
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
from setuptools import find_packages, setup
|
| 4 |
+
|
| 5 |
+
import os
|
| 6 |
+
import subprocess
|
| 7 |
+
import time
|
| 8 |
+
import torch
|
| 9 |
+
from torch.utils.cpp_extension import BuildExtension, CppExtension, CUDAExtension
|
| 10 |
+
|
| 11 |
+
version_file = 'basicsr/version.py'
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def readme():
|
| 15 |
+
with open('README.md', encoding='utf-8') as f:
|
| 16 |
+
content = f.read()
|
| 17 |
+
return content
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def get_git_hash():
|
| 21 |
+
|
| 22 |
+
def _minimal_ext_cmd(cmd):
|
| 23 |
+
# construct minimal environment
|
| 24 |
+
env = {}
|
| 25 |
+
for k in ['SYSTEMROOT', 'PATH', 'HOME']:
|
| 26 |
+
v = os.environ.get(k)
|
| 27 |
+
if v is not None:
|
| 28 |
+
env[k] = v
|
| 29 |
+
# LANGUAGE is used on win32
|
| 30 |
+
env['LANGUAGE'] = 'C'
|
| 31 |
+
env['LANG'] = 'C'
|
| 32 |
+
env['LC_ALL'] = 'C'
|
| 33 |
+
out = subprocess.Popen(cmd, stdout=subprocess.PIPE, env=env).communicate()[0]
|
| 34 |
+
return out
|
| 35 |
+
|
| 36 |
+
try:
|
| 37 |
+
out = _minimal_ext_cmd(['git', 'rev-parse', 'HEAD'])
|
| 38 |
+
sha = out.strip().decode('ascii')
|
| 39 |
+
except OSError:
|
| 40 |
+
sha = 'unknown'
|
| 41 |
+
|
| 42 |
+
return sha
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def get_hash():
|
| 46 |
+
if os.path.exists('.git'):
|
| 47 |
+
sha = get_git_hash()[:7]
|
| 48 |
+
# currently ignore this
|
| 49 |
+
# elif os.path.exists(version_file):
|
| 50 |
+
# try:
|
| 51 |
+
# from basicsr.version import __version__
|
| 52 |
+
# sha = __version__.split('+')[-1]
|
| 53 |
+
# except ImportError:
|
| 54 |
+
# raise ImportError('Unable to get git version')
|
| 55 |
+
else:
|
| 56 |
+
sha = 'unknown'
|
| 57 |
+
|
| 58 |
+
return sha
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def write_version_py():
|
| 62 |
+
content = """# GENERATED VERSION FILE
|
| 63 |
+
# TIME: {}
|
| 64 |
+
__version__ = '{}'
|
| 65 |
+
__gitsha__ = '{}'
|
| 66 |
+
version_info = ({})
|
| 67 |
+
"""
|
| 68 |
+
sha = get_hash()
|
| 69 |
+
with open('VERSION', 'r') as f:
|
| 70 |
+
SHORT_VERSION = f.read().strip()
|
| 71 |
+
VERSION_INFO = ', '.join([x if x.isdigit() else f'"{x}"' for x in SHORT_VERSION.split('.')])
|
| 72 |
+
|
| 73 |
+
version_file_str = content.format(time.asctime(), SHORT_VERSION, sha, VERSION_INFO)
|
| 74 |
+
with open(version_file, 'w') as f:
|
| 75 |
+
f.write(version_file_str)
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
def get_version():
|
| 79 |
+
with open(version_file, 'r') as f:
|
| 80 |
+
exec(compile(f.read(), version_file, 'exec'))
|
| 81 |
+
return locals()['__version__']
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
def make_cuda_ext(name, module, sources, sources_cuda=None):
|
| 85 |
+
if sources_cuda is None:
|
| 86 |
+
sources_cuda = []
|
| 87 |
+
define_macros = []
|
| 88 |
+
extra_compile_args = {'cxx': []}
|
| 89 |
+
|
| 90 |
+
if torch.cuda.is_available() or os.getenv('FORCE_CUDA', '0') == '1':
|
| 91 |
+
define_macros += [('WITH_CUDA', None)]
|
| 92 |
+
extension = CUDAExtension
|
| 93 |
+
extra_compile_args['nvcc'] = [
|
| 94 |
+
'-D__CUDA_NO_HALF_OPERATORS__',
|
| 95 |
+
'-D__CUDA_NO_HALF_CONVERSIONS__',
|
| 96 |
+
'-D__CUDA_NO_HALF2_OPERATORS__',
|
| 97 |
+
]
|
| 98 |
+
sources += sources_cuda
|
| 99 |
+
else:
|
| 100 |
+
print(f'Compiling {name} without CUDA')
|
| 101 |
+
extension = CppExtension
|
| 102 |
+
|
| 103 |
+
return extension(
|
| 104 |
+
name=f'{module}.{name}',
|
| 105 |
+
sources=[os.path.join(*module.split('.'), p) for p in sources],
|
| 106 |
+
define_macros=define_macros,
|
| 107 |
+
extra_compile_args=extra_compile_args)
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
def get_requirements(filename='requirements.txt'):
|
| 111 |
+
here = os.path.dirname(os.path.realpath(__file__))
|
| 112 |
+
with open(os.path.join(here, filename), 'r') as f:
|
| 113 |
+
requires = [line.replace('\n', '') for line in f.readlines()]
|
| 114 |
+
return requires
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
if __name__ == '__main__':
|
| 118 |
+
cuda_ext = os.getenv('BASICSR_EXT') # whether compile cuda ext
|
| 119 |
+
if cuda_ext == 'True':
|
| 120 |
+
ext_modules = [
|
| 121 |
+
make_cuda_ext(
|
| 122 |
+
name='deform_conv_ext',
|
| 123 |
+
module='basicsr.ops.dcn',
|
| 124 |
+
sources=['src/deform_conv_ext.cpp'],
|
| 125 |
+
sources_cuda=['src/deform_conv_cuda.cpp', 'src/deform_conv_cuda_kernel.cu']),
|
| 126 |
+
make_cuda_ext(
|
| 127 |
+
name='fused_act_ext',
|
| 128 |
+
module='basicsr.ops.fused_act',
|
| 129 |
+
sources=['src/fused_bias_act.cpp'],
|
| 130 |
+
sources_cuda=['src/fused_bias_act_kernel.cu']),
|
| 131 |
+
make_cuda_ext(
|
| 132 |
+
name='upfirdn2d_ext',
|
| 133 |
+
module='basicsr.ops.upfirdn2d',
|
| 134 |
+
sources=['src/upfirdn2d.cpp'],
|
| 135 |
+
sources_cuda=['src/upfirdn2d_kernel.cu']),
|
| 136 |
+
]
|
| 137 |
+
else:
|
| 138 |
+
ext_modules = []
|
| 139 |
+
|
| 140 |
+
write_version_py()
|
| 141 |
+
setup(
|
| 142 |
+
name='basicsr',
|
| 143 |
+
version=get_version(),
|
| 144 |
+
description='Open Source Image and Video Super-Resolution Toolbox',
|
| 145 |
+
long_description=readme(),
|
| 146 |
+
long_description_content_type='text/markdown',
|
| 147 |
+
author='Xintao Wang',
|
| 148 |
+
author_email='[email protected]',
|
| 149 |
+
keywords='computer vision, restoration, super resolution',
|
| 150 |
+
url='https://github.com/xinntao/BasicSR',
|
| 151 |
+
include_package_data=True,
|
| 152 |
+
packages=find_packages(exclude=('options', 'datasets', 'experiments', 'results', 'tb_logger', 'wandb')),
|
| 153 |
+
classifiers=[
|
| 154 |
+
'Development Status :: 4 - Beta',
|
| 155 |
+
'License :: OSI Approved :: Apache Software License',
|
| 156 |
+
'Operating System :: OS Independent',
|
| 157 |
+
'Programming Language :: Python :: 3',
|
| 158 |
+
'Programming Language :: Python :: 3.7',
|
| 159 |
+
'Programming Language :: Python :: 3.8',
|
| 160 |
+
],
|
| 161 |
+
license='Apache License 2.0',
|
| 162 |
+
setup_requires=['cython', 'numpy'],
|
| 163 |
+
install_requires=get_requirements(),
|
| 164 |
+
ext_modules=ext_modules,
|
| 165 |
+
cmdclass={'build_ext': BuildExtension},
|
| 166 |
+
zip_safe=False)
|