File size: 5,384 Bytes
7929118 ad4a1b4 7929118 371a42d 32ebb64 7929118 0fb5dd0 36c8cd0 11de928 7608869 072199f 7608869 11de928 0fb5dd0 20570d0 2609a31 20570d0 2609a31 e1ab7ff 44e43e4 e1ab7ff 44e43e4 61bfc32 44e43e4 e1ab7ff 1d1ab93 6253d52 c46f32e 32ebb64 8b49856 32ebb64 6253d52 970442c e07033f fe8e7b3 6253d52 ab96051 168dfa1 25c5968 6253d52 844550b 2853465 950e7c2 597edad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
---
license: apache-2.0
language:
- en
pipeline_tag: text-generation
library_name: transformers.js
tags:
- text-generation-inference
- distillation
- grpo
- vae
- pytorch
- agent
- education
- SLM
- small
- tiny
- smol
- distilled
- micro
- study
- testing
- blackbox
- offline
- localdb
base_model:
- openai-community/gpt2
---
```
::: ::: ::::::::::: :::::::: ::::::::: :::::::: :::::::::
:+:+: :+:+: :+: :+: :+: :+: :+: :+: :+: :+: :+:
+:+ +:+:+ +:+ +:+ +:+ +:+ +:+ +:+ +:+ |:| +:+
+#+ +:+ +#+ +#+ +#+ +#++:++#: +#+ +:+ |#| +:+
+#+ +#+ +#+ +#+ +#+ +#+ +#+ +#+ |#| +#+
### ### ### ### ### ### ### ### ### ### ###
### ### ########### ######## ### ### ######## #########
```
# MICROD v1.0 (micro-distill-grpo-vae)
This model was made with the 'Micro Distillery' app available at:
webxos.netlify.app/MICROD
('Micro Distillery' is availabile for download in /micro_distillery/ folder)
<div id="app">
<!-- TOP BAR -->
<div class="top-bar">
<div class="top-bar-left">
<div class="top-bar-subtitle">by webXOS</div>
</div>
<div class="top-bar-right">
<div class="pill">- **Model size**: 42M parameters</div>
<div class="pill">- **Model type**: micro-distill-grpo-vae</div>
<button id="invertBtn" class="btn-ghost">- **License**: Apache 2.0</button>
</div>
## Model Description
This is a distilled language model trained using Group Relative Policy Optimization (GRPO) with VAE filtering.
**MICROD v1.0 (micro-distill-grpo-vae)** is a small template model designed to be built upon for custom ground up builds. It is distillated into a
small set of files the user can use to template their own agents. Designed for educational learning and micro scalling.
Use **MICROD V1.0 (micro-distill-grpo-vae)** in your own custom projects and train it from the ground up.
The model's architecture details further underscore an educational niche: a hidden size of 512, 8 layers, 8 attention heads, a vocabulary of 50,257 tokens,
and a max sequence length of 1024. Licensed under Apache 2.0, it's openly available for modification, and its small footprint allows quantization,
making it runnable on modest hardware like CPUs or even browsers via TensorFlow.js integration.
## Model Details
- **Model type**: micro-distill-grpo-vae
- **Model size**: 42M parameters
- **Language**: English
- **License**: Apache 2.0
## Training Methodology
- **GRPO (Group Relative Policy Optimization)**: 8 groups
- **VAE Filtering**: 32D latent space
- **KV-Cache Reuse**: 512 cache size
## Architecture Details
- Hidden size: 512
- Number of layers: 8
- Attention heads: 8
- Vocabulary size: 50257
- Maximum sequence length: 1024
## Usage
-Model Distillation Training: Simulate GRPO optimization with VAE filtering for small LLMs (42M-345M params).
-Policy Experimentation: Test group sizes, KL penalties, cache reuse for RLHF-like training.
-VAE Filtering: Apply latent space compression to improve distillation quality.
-Sandbox Testing: Execute safe Python code with feedback masking.
-Export & Deployment: Generate deployable models for inference in various frameworks.
-Offline Usage: PWA supports offline training simulation and exports.
## Citation
If you use this data in research, please cite:
@model{microd_v1_2025,
title={MICROD_v1},
author={webXOS]
year={2025},
publisher={webXOS},
url={webxos.netlify.app}
}
### EXAMPLE: Using Transformers
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("micro-distill-grpo-vae")
tokenizer = AutoTokenizer.from_pretrained("micro-distill-grpo-vae")
inputs = tokenizer("Hello, world!", return_tensors="pt")
outputs = model.generate(**inputs, max_length=50)
print(tokenizer.decode(outputs[0]))
```
### EXAMPLE: USE CASES
**MICROD_v1** may not rival larger models in breadth, but a focus on accessibility and browser-based AI development opens doors for
innovators balancing all perspectives in the Small Language Model space.
1. Prototype without Internet
2. Offline Simulations in Black Box
3. Simple Story Generators
4. Custom Agentic Development
5. Train on Custom Data
6. Experiment with max_length
7. AI agents for custom Games
8. Educational Fine-Tuning
9. Prepare Datasets
10. Fine-tune via GRPO Trainer
11. Evaluate PY in Sandbox
12. Create task-specific Variants like Code Tutors
### OVERVIEW
In terms of applications, small distilled models like **MICROD_v1** align with broader trends in SLMs, which prioritize efficiency, accessibility,
and specialization over the scale of large language models (LLMs). For example, they can be fine-tuned for targeted tasks such as customer support
chatbots, where quick responses on edge devices are crucial, or educational tools for teaching natural language processing concepts. In healthcare,
distilled models might power privacy-focused symptom checkers on mobile apps, avoiding data transmission to cloud servers. Automation and control
systems benefit from their low latency, as surveyed in research on tiny language models (TLMs), which use techniques like knowledge distillation and
quantization to enable on-device inference for robotics or IoT devices. |