Upload model.py
Browse files
model.py
ADDED
|
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.optim as optim
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
import torch.distributed as dist
|
| 6 |
+
from torch.utils.cpp_extension import load
|
| 7 |
+
from typing import Dict, List, Optional, Tuple, Callable, Union
|
| 8 |
+
|
| 9 |
+
eps = torch.finfo(torch.float32).eps
|
| 10 |
+
|
| 11 |
+
def norm(x: torch.Tensor):
|
| 12 |
+
return torch.rms_norm(x, (x.size(-1),), eps=eps)
|
| 13 |
+
|
| 14 |
+
class Rotary(nn.Module):
|
| 15 |
+
def __init__(self, dim: int, max_seq_len: int):
|
| 16 |
+
super().__init__()
|
| 17 |
+
# half-truncate RoPE by @YouJiacheng (w/ base freq tuning)
|
| 18 |
+
angular_freq = (1 / 1024) ** torch.linspace(0, 1, steps=dim//4, dtype=torch.float32)
|
| 19 |
+
angular_freq = torch.cat([angular_freq, angular_freq.new_zeros(dim//4)])
|
| 20 |
+
t = torch.arange(max_seq_len, dtype=torch.float32)
|
| 21 |
+
theta = torch.einsum("i,j -> ij", t, angular_freq)
|
| 22 |
+
self.cos = nn.Buffer(theta.cos(), persistent=False)
|
| 23 |
+
self.sin = nn.Buffer(theta.sin(), persistent=False)
|
| 24 |
+
|
| 25 |
+
def forward(self, x_BTHD: torch.Tensor):
|
| 26 |
+
assert self.cos.size(0) >= x_BTHD.size(-3)
|
| 27 |
+
cos, sin = self.cos[None, :x_BTHD.size(-3), None, :], self.sin[None, :x_BTHD.size(-3), None, :]
|
| 28 |
+
x1, x2 = x_BTHD.to(dtype=torch.float32).chunk(2, dim=-1)
|
| 29 |
+
y1 = x1 * cos + x2 * sin
|
| 30 |
+
y2 = x1 * (-sin) + x2 * cos
|
| 31 |
+
return torch.cat((y1, y2), 3).type_as(x_BTHD)
|
| 32 |
+
|
| 33 |
+
class CausalSoftmaxAttention(nn.Module):
|
| 34 |
+
def __init__(
|
| 35 |
+
self,
|
| 36 |
+
layer_id: int,
|
| 37 |
+
layers: int,
|
| 38 |
+
num_heads: int,
|
| 39 |
+
vocab_size: int,
|
| 40 |
+
input_dims: int,
|
| 41 |
+
hidden_dims: Union[int, None] = None,
|
| 42 |
+
):
|
| 43 |
+
super().__init__()
|
| 44 |
+
|
| 45 |
+
self.layer_id = layer_id
|
| 46 |
+
self.head_dim = input_dims // num_heads
|
| 47 |
+
self.num_heads = num_heads
|
| 48 |
+
assert input_dims % self.num_heads == 0
|
| 49 |
+
|
| 50 |
+
H = self.num_heads
|
| 51 |
+
N = self.head_dim
|
| 52 |
+
C = input_dims
|
| 53 |
+
|
| 54 |
+
with torch.no_grad():
|
| 55 |
+
init_bounds = 0.5 / (C ** 0.5)
|
| 56 |
+
|
| 57 |
+
self.q_proj = nn.Linear(C, C, bias=False)
|
| 58 |
+
self.k_proj = nn.Linear(C, C, bias=False)
|
| 59 |
+
self.v_proj = nn.Linear(C, C, bias=False)
|
| 60 |
+
self.g_proj = nn.Linear(C, C, bias=False)
|
| 61 |
+
self.o_proj = nn.Linear(C, C, bias=False)
|
| 62 |
+
|
| 63 |
+
self.rotary = Rotary(N, 2048)
|
| 64 |
+
|
| 65 |
+
self.q_proj.weight.data.uniform_(-init_bounds, init_bounds)
|
| 66 |
+
self.k_proj.weight.data.uniform_(-init_bounds, init_bounds)
|
| 67 |
+
self.v_proj.weight.data.uniform_(-init_bounds, init_bounds)
|
| 68 |
+
self.g_proj.weight.data.uniform_(-init_bounds, init_bounds)
|
| 69 |
+
self.o_proj.weight.data.zero_()
|
| 70 |
+
|
| 71 |
+
def forward(self, x):
|
| 72 |
+
B, T, C = x.size()
|
| 73 |
+
H = self.num_heads
|
| 74 |
+
N = C // H
|
| 75 |
+
|
| 76 |
+
def forward1(x):
|
| 77 |
+
x = norm(x)
|
| 78 |
+
|
| 79 |
+
q = self.q_proj(x).view(B, T, H, N)
|
| 80 |
+
k = self.k_proj(x).view(B, T, H, N)
|
| 81 |
+
v = self.v_proj(x).view(B, T, H, N)
|
| 82 |
+
g = self.g_proj(x).sigmoid()
|
| 83 |
+
|
| 84 |
+
q, k = norm(q), norm(k)
|
| 85 |
+
q, k = self.rotary(q), self.rotary(k)
|
| 86 |
+
|
| 87 |
+
return (q, k, v, g)
|
| 88 |
+
|
| 89 |
+
(q, k, v, g) = torch.utils.checkpoint.checkpoint(forward1, x, use_reentrant=False)
|
| 90 |
+
|
| 91 |
+
x = F.scaled_dot_product_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), is_causal=True).transpose(1, 2).contiguous().view(B, T, C)
|
| 92 |
+
|
| 93 |
+
x = self.o_proj(x * g)
|
| 94 |
+
|
| 95 |
+
return x
|
| 96 |
+
|
| 97 |
+
class MLP(nn.Module):
|
| 98 |
+
def __init__(
|
| 99 |
+
self,
|
| 100 |
+
layer_id: int,
|
| 101 |
+
layers: int,
|
| 102 |
+
num_heads: int,
|
| 103 |
+
vocab_size: int,
|
| 104 |
+
input_dims: int,
|
| 105 |
+
hidden_dims: Union[int, None] = None,
|
| 106 |
+
):
|
| 107 |
+
super().__init__()
|
| 108 |
+
|
| 109 |
+
self.layer_id = layer_id
|
| 110 |
+
|
| 111 |
+
C = input_dims
|
| 112 |
+
hidden_dims = hidden_dims or 4 * C
|
| 113 |
+
|
| 114 |
+
with torch.no_grad():
|
| 115 |
+
init_bounds = 0.5 / (C ** 0.5)
|
| 116 |
+
|
| 117 |
+
self.k_proj = nn.Linear(C, hidden_dims, bias=False)
|
| 118 |
+
self.v_proj = nn.Linear(hidden_dims, C, bias=False)
|
| 119 |
+
|
| 120 |
+
self.k_proj.weight.data.uniform_(-init_bounds, init_bounds)
|
| 121 |
+
self.v_proj.weight.data.zero_()
|
| 122 |
+
|
| 123 |
+
def forward(self, x):
|
| 124 |
+
B, T, C = x.size()
|
| 125 |
+
|
| 126 |
+
def forward1(x):
|
| 127 |
+
x = norm(x)
|
| 128 |
+
|
| 129 |
+
k = torch.relu(self.k_proj(x)).square()
|
| 130 |
+
|
| 131 |
+
return self.v_proj(k)
|
| 132 |
+
|
| 133 |
+
output = torch.utils.checkpoint.checkpoint(forward1, x, use_reentrant=False)
|
| 134 |
+
|
| 135 |
+
return output
|
| 136 |
+
|
| 137 |
+
class SoftmaxBlock(nn.Module):
|
| 138 |
+
def __init__(
|
| 139 |
+
self,
|
| 140 |
+
layer_id: int,
|
| 141 |
+
layers: int,
|
| 142 |
+
num_heads: int,
|
| 143 |
+
vocab_size: int,
|
| 144 |
+
input_dims: int,
|
| 145 |
+
hidden_dims: Union[int, None] = None,
|
| 146 |
+
):
|
| 147 |
+
super().__init__()
|
| 148 |
+
self.layer_id = layer_id
|
| 149 |
+
|
| 150 |
+
self.att = CausalSoftmaxAttention(layer_id, layers, num_heads, vocab_size, input_dims, hidden_dims)
|
| 151 |
+
self.ffn = MLP(layer_id, layers, num_heads, vocab_size, input_dims, hidden_dims)
|
| 152 |
+
|
| 153 |
+
def forward(self, x):
|
| 154 |
+
xx = self.att(x)
|
| 155 |
+
x = x + xx
|
| 156 |
+
|
| 157 |
+
xx = self.ffn(x)
|
| 158 |
+
x = x + xx
|
| 159 |
+
|
| 160 |
+
return x
|
| 161 |
+
|
| 162 |
+
class Transformer(nn.Module):
|
| 163 |
+
def __init__(
|
| 164 |
+
self,
|
| 165 |
+
layers: int,
|
| 166 |
+
num_heads: int,
|
| 167 |
+
vocab_size: int,
|
| 168 |
+
input_dims: int,
|
| 169 |
+
hidden_dims: Union[int, None] = None,
|
| 170 |
+
dtype = None
|
| 171 |
+
):
|
| 172 |
+
super().__init__()
|
| 173 |
+
|
| 174 |
+
self.emb = nn.Embedding(vocab_size, input_dims)
|
| 175 |
+
self.emb.weight.data.uniform_(-1e-4, 1e-4)
|
| 176 |
+
|
| 177 |
+
self.blocks = nn.ModuleList([SoftmaxBlock(i, layers, num_heads, vocab_size, input_dims, hidden_dims) for i in range(layers)])
|
| 178 |
+
|
| 179 |
+
def forward(self, idx):
|
| 180 |
+
|
| 181 |
+
x = norm(self.emb(idx))
|
| 182 |
+
|
| 183 |
+
for i, block in enumerate(self.blocks):
|
| 184 |
+
x = block(x)
|
| 185 |
+
|
| 186 |
+
x = norm(x)
|
| 187 |
+
|
| 188 |
+
logits = F.linear(x, self.emb.weight)
|
| 189 |
+
|
| 190 |
+
return logits
|