ReLaX-VQA / src /feature_pool.py
Xinyi Wang
first commit
211b431
from PIL import Image
import pandas as pd
import numpy as np
import os
from pathlib import Path
import scipy.io
import shutil
import torch
import time
import cv2
from torchvision import models, transforms
from utils.logger_setup import logger
from extractor import visualise_vgg_layer, visualise_resnet_layer, visualise_vit_layer, vf_extract
def load_metadata(video_type):
print(f'video_type: {video_type}\n')
# Test
if video_type == 'test':
return pd.read_csv("../metadata/test_videos.csv")
# NR:
elif video_type == 'resolution_ugc':
resolution = '360P'
return pd.read_csv(f"../metadata/YOUTUBE_UGC_{resolution}_metadata.csv")
else:
return pd.read_csv(f'../metadata/{video_type.upper()}_metadata.csv')
def get_video_paths(network_name, video_type, videodata, i):
video_name = videodata['vid'][i]
video_width = videodata['width'][i]
video_height = videodata['height'][i]
pixfmt = videodata['pixfmt'][i]
framerate = videodata['framerate'][i]
common_path = os.path.join('..', 'video_sampled_frame')
# Test
if video_type == 'test':
video_path = f"../ugc_original_videos/{video_name}.mp4"
# NR:
elif video_type == 'konvid_1k':
video_path = Path("D:/video_dataset/KoNViD_1k/KoNViD_1k_videos") / f"{video_name}.mp4"
elif video_type == 'lsvq_train' or video_type == 'lsvq_test' or video_type == 'lsvq_test_1080P':
print(f'video_name: {video_name}')
video_path = Path("D:/video_dataset/LSVQ") / f"{video_name}.mp4"
print(f'video_path: {video_path}')
video_name = os.path.splitext(os.path.basename(video_path))[0]
elif video_type == 'live_vqc':
video_path = Path("D:/video_dataset/LIVE-VQC/video") / f"{video_name}.mp4"
elif video_type == 'live_qualcomm':
video_path = Path("D:/video_dataset/LIVE-Qualcomm") / f"{video_name}.yuv"
video_name = os.path.splitext(os.path.basename(video_path))[0]
elif video_type == 'cvd_2014':
video_path = Path("D:/video_dataset/CVD2014") / f"{video_name}.avi"
video_name = os.path.splitext(os.path.basename(video_path))[0]
elif video_type == 'youtube_ugc':
video_path = Path("D:/video_dataset/ugc-dataset/youtube_ugc/") / f"{video_name}.mkv"
video_name = os.path.splitext(os.path.basename(video_path))[0]
sampled_frame_path = os.path.join(common_path, f'pool', f'video_{str(i + 1)}')
feature_name = f"{network_name}_feature_map"
if video_type == 'resolution_ugc':
resolution = '360P'
# video_path = f'/user/work/um20242/dataset/ugc-dataset/{resolution}/{video_name}.mkv'
video_path = Path(f"D:/video_dataset/ugc-dataset/youtube_ugc/original_videos/{resolution}") / f"{video_name}.mkv"
sampled_frame_path = os.path.join(common_path, f'ytugc_sampled_frame_{resolution}', f'video_{str(i + 1)}')
feature_name = f"{network_name}_feature_map_{resolution}"
return video_name, video_path, sampled_frame_path, feature_name, video_width, video_height, pixfmt, framerate
def get_deep_feature(network_name, video_name, frame, frame_number, model, device, layer_name):
png_path = f'../visualisation/{network_name}_{layer_name}/{video_name}/'
os.makedirs(png_path, exist_ok=True)
if network_name == 'resnet50':
if layer_name == 'pool':
visual_layer = 'resnet50.avgpool' # before avg_pool
resnet50 = model
activations_dict, _, total_flops, total_params = visualise_resnet_layer.process_video_frame(video_name, frame, frame_number, visual_layer, resnet50, device)
elif network_name == 'vgg16':
if layer_name == 'pool':
# visual_layer = 'fc1'
visual_layer = 'fc2' # fc1 = vgg16.classifier[0], fc2 = vgg16.classifier[3]
vgg16 = model
activations_dict, _, total_flops, total_params = visualise_vgg_layer.process_video_frame(video_name, frame, frame_number, visual_layer, vgg16, device)
elif network_name == 'vit':
patch_size = 16
activations_dict, _, total_flops, total_params = visualise_vit_layer.process_video_frame(video_name, frame, frame_number, model, patch_size, device)
return png_path, activations_dict, total_flops, total_params
def process_video_feature(video_feature, network_name, layer_name):
# print(f'video frame number: {len(video_feature)}')
# initialize an empty list to store processed frames
averaged_frames = []
# iterate through each frame in the video_feature
for frame in video_feature:
frame_features = []
if layer_name == 'pool':
if network_name == 'vit':
# global mean and std
global_mean = torch.mean(frame, dim=0)
global_max = torch.max(frame, dim=0)[0]
global_std = torch.std(frame, dim=0)
# concatenate all pooling
combined_features = torch.hstack([global_mean, global_max, global_std])
frame_features.append(combined_features)
elif network_name == 'resnet50':
frame = torch.squeeze(torch.tensor(frame))
# global mean and std
global_mean = torch.mean(frame, dim=0)
global_max = torch.max(frame, dim=0)[0]
global_std = torch.std(frame, dim=0)
# concatenate all pooling
combined_features = torch.hstack([frame, global_mean, global_max, global_std])
frame_features.append(combined_features)
# concatenate the layer means horizontally to form the processed frame
processed_frame = torch.hstack(frame_features)
averaged_frames.append(processed_frame)
averaged_frames = torch.stack(averaged_frames)
# output the shape of the resulting feature vector
logger.debug(f"Shape of feature vector after global pooling: {averaged_frames.shape}")
return averaged_frames
def flow_to_rgb(flow):
mag, ang = cv2.cartToPolar(flow[..., 0], flow[..., 1])
mag = cv2.normalize(mag, None, 0, 255, cv2.NORM_MINMAX)
# convert angle to hue
hue = ang * 180 / np.pi / 2
# create HSV
hsv = np.zeros((flow.shape[0], flow.shape[1], 3), dtype=np.uint8)
hsv[..., 0] = hue
hsv[..., 1] = 255
hsv[..., 2] = cv2.normalize(mag, None, 0, 255, cv2.NORM_MINMAX)
# convert HSV to RGB
rgb = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
return rgb
# Frame Differencing
def compute_frame_difference(frame_tensor, frame_next_tensor):
residual = torch.abs(frame_next_tensor - frame_tensor)
return residual
# Optical Flow
def compute_optical_flow(frame, frame_next, device):
flow = cv2.calcOpticalFlowFarneback(cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY),
cv2.cvtColor(frame_next, cv2.COLOR_BGR2GRAY),
None, 0.5, 3, 15, 3, 5, 1.2, 0)
opticalflow_rgb = flow_to_rgb(flow)
opticalflow_rgb_tensor = transforms.ToTensor()(opticalflow_rgb).unsqueeze(0).to(device)
return opticalflow_rgb_tensor
if __name__ == '__main__':
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
if device.type == "cuda":
torch.cuda.set_device(0)
# device = torch.device("cpu")
video_type = 'test' # test
# resolution_ugc/konvid_1k/live_vqc/cvd_2014/live_qualcomm
# lsvq_train/lsvq_test/lsvq_test_1080P/
frame_name = 'sampled_frame' # sampled_frame, frame_diff, optical_flow
network_name = 'vit'
layer_name = 'pool'
if network_name == 'vit':
model = visualise_vit_layer.VitGenerator('vit_base', 16, device, evaluate=True, random=False, verbose=True)
elif network_name == 'resnet50':
model = models.resnet50(pretrained=True).to(device)
else:
model = models.vgg16(pretrained=True).to(device)
logger.info(f"video type: {video_type}, frame name: {frame_name}, network name: {network_name}, layer name: {layer_name}")
logger.info(f"torch cuda: {torch.cuda.is_available()}")
videodata = load_metadata(video_type)
valid_video_types = ['test',
'resolution_ugc', 'konvid_1k', 'live_vqc', 'cvd_2014', 'live_qualcomm',
'lsvq_train', 'lsvq_test', 'lsvq_test_1080P']
begin_time = time.time()
if video_type in valid_video_types:
for i in range(len(videodata)):
start_time = time.time()
video_name, video_path, sampled_frame_path, feature_name, video_width, video_height, pixfmt, framerate = get_video_paths(network_name, video_type, videodata, i)
frames, frames_next = vf_extract.process_video_residual(video_type, video_name, framerate, video_path, sampled_frame_path)
logger.info(f'{video_name}')
all_frame_activations_feats = []
for j, (frame, frame_next) in enumerate(zip(frames, frames_next)):
frame_number = j + 1
# DNN feature extraction
if frame_name in ['frame_diff', 'optical_flow']:
# compute residual
frame_tensor = transforms.ToTensor()(frame).unsqueeze(0).to(device)
frame_next_tensor = transforms.ToTensor()(frame_next).unsqueeze(0).to(device)
if frame_name == 'frame_diff':
residual = compute_frame_difference(frame_tensor, frame_next_tensor)
png_path, frag_activations, total_flops, total_params = get_deep_feature(network_name, video_name, residual, frame_number, model, device, layer_name)
elif frame_name == 'optical_flow':
opticalflow_rgb_tensor = compute_optical_flow(frame, frame_next, device)
png_path, frag_activations, total_flops, total_params = get_deep_feature(network_name, video_name, opticalflow_rgb_tensor, frame_number, model, device, layer_name)
elif frame_name == 'sampled_frame':
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame_rgb_tensor = transforms.ToTensor()(frame_rgb).unsqueeze(0).to(device)
png_path, frag_activations, total_flops, total_params = get_deep_feature(network_name, video_name, frame_rgb_tensor, frame_number, model, device, layer_name)
# feature combined
all_frame_activations_feats.append(frag_activations)
averaged_frames_feats = process_video_feature(all_frame_activations_feats, network_name, layer_name)
print("Features shape:", averaged_frames_feats.shape)
# remove tmp folders
shutil.rmtree(png_path)
shutil.rmtree(sampled_frame_path)
averaged_npy = averaged_frames_feats.cpu().numpy()
# save the processed data as numpy file
output_npy_path = f'../features/{video_type}/{frame_name}_{network_name}_{layer_name}/'
os.makedirs(output_npy_path, exist_ok=True)
# output_npy_name = f'{output_npy_path}video_{str(i + 1)}_{feature_name}.npy'
# np.save(output_npy_name, averaged_npy)
# print(f'Processed file saved to: {output_npy_name}')
run_time = time.time() - start_time
print(f"Execution time for {video_name} feature extraction: {run_time:.4f} seconds\n")
# save feature mat file
average_data = np.mean(averaged_npy, axis=0)
if i == 0:
feats_matrix = np.zeros((len(videodata),) + average_data.shape)
feats_matrix[i] = average_data
print((f'All features shape: {feats_matrix.shape}'))
logger.debug(f'\n All features shape: {feats_matrix.shape}')
mat_file_path = f'../features/{video_type}/'
mat_file_name = f'{mat_file_path}{video_type}_{frame_name}_{network_name}_{layer_name}_feats.mat'
scipy.io.savemat(mat_file_name, {video_type: feats_matrix})
logger.debug(f'Successfully created {mat_file_name}')
logger.debug(f"Execution time for all feature extraction: {time.time() - begin_time:.4f} seconds\n")