Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: peft
|
| 3 |
+
datasets:
|
| 4 |
+
- liuhaotian/LLaVA-Pretrain
|
| 5 |
+
- liuhaotian/LLaVA-Instruct-150K
|
| 6 |
+
pipeline_tag: visual-question-answering
|
| 7 |
+
---
|
| 8 |
+
|
| 9 |
+
<div align="center">
|
| 10 |
+
<img src="https://github.com/InternLM/lmdeploy/assets/36994684/0cf8d00f-e86b-40ba-9b54-dc8f1bc6c8d8" width="600"/>
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
[](https://github.com/InternLM/xtuner)
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
</div>
|
| 17 |
+
|
| 18 |
+
## Model
|
| 19 |
+
|
| 20 |
+
llava-internlm2-7b is a LLaVA model fine-tuned from [InternLM2-Chat-7B](https://huggingface.co/internlm/internlm2-chat-7b) and [CLIP-ViT-Large-patch14-336](https://huggingface.co/openai/clip-vit-large-patch14-336) with [LLaVA-Pretrain](https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain) and [LLaVA-Instruct](https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K) by [XTuner](https://github.com/InternLM/xtuner).
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
## Quickstart
|
| 24 |
+
|
| 25 |
+
### Installation
|
| 26 |
+
|
| 27 |
+
```shell
|
| 28 |
+
pip install -U 'xtuner[deepspeed]'
|
| 29 |
+
```
|
| 30 |
+
|
| 31 |
+
### Chat
|
| 32 |
+
|
| 33 |
+
```shell
|
| 34 |
+
xtuner chat internlm/internlm2-chat-7b \
|
| 35 |
+
--visual-encoder openai/clip-vit-large-patch14-336 \
|
| 36 |
+
--llava xtuner/llava-internlm2-7b \
|
| 37 |
+
--prompt-template internlm2_chat \
|
| 38 |
+
--image $IMAGE_PATH
|
| 39 |
+
```
|
| 40 |
+
|
| 41 |
+
### Training
|
| 42 |
+
|
| 43 |
+
1. Alignment module pretraining (saved by default in `./work_dirs/`)
|
| 44 |
+
|
| 45 |
+
```shell
|
| 46 |
+
NPROC_PER_NODE=8 xtuner train llava_internlm2_chat_7b_clip_vit_large_p14_336_e1_gpu8_pretrain --deepspeed deepspeed_zero2
|
| 47 |
+
```
|
| 48 |
+
|
| 49 |
+
2. Instruction following fine-tuning (saved by default in `./work_dirs/`)
|
| 50 |
+
|
| 51 |
+
```shell
|
| 52 |
+
NPROC_PER_NODE=8 xtuner train llava_internlm2_chat_7b_qlora_clip_vit_large_p14_336_lora_e1_gpu8_finetune --deepspeed deepspeed_zero2
|
| 53 |
+
```
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
### MMBench Evaluation
|
| 57 |
+
|
| 58 |
+
XTuner integrates the MMBench evaluation, and you can perform evaluations with the following command!
|
| 59 |
+
|
| 60 |
+
```bash
|
| 61 |
+
xtuner mmbench internlm/internlm2-chat-7b \
|
| 62 |
+
--visual-encoder openai/clip-vit-large-patch14-336 \
|
| 63 |
+
--llava xtuner/llava-internlm2-7b \
|
| 64 |
+
--prompt-template internlm2_chat \
|
| 65 |
+
--data-path $MMBENCH_DATA_PATH \
|
| 66 |
+
--work-dir $RESULT_PATH
|
| 67 |
+
```
|
| 68 |
+
|
| 69 |
+
After the evaluation is completed, if it's a development set, it will directly print out the results; If it's a test set, you need to submit `mmbench_result.xlsx` to the official MMBench for final evaluation to obtain precision results!
|
| 70 |
+
|
| 71 |
+
## Citation
|
| 72 |
+
|
| 73 |
+
```bibtex
|
| 74 |
+
@misc{2023xtuner,
|
| 75 |
+
title={XTuner: A Toolkit for Efficiently Fine-tuning LLM},
|
| 76 |
+
author={XTuner Contributors},
|
| 77 |
+
howpublished = {\url{https://github.com/InternLM/xtuner}},
|
| 78 |
+
year={2023}
|
| 79 |
+
}
|
| 80 |
+
```
|