File size: 36,999 Bytes
80a6d85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
---

tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:360886
- loss:CoSENTLoss
base_model: sentence-transformers/all-mpnet-base-v2
widget:
- source_sentence: '|Immunosuppressant drug therapy (procedure)| : { |Method (attribute)|

    = |Administration - action (qualifier value)|, |Direct substance (attribute)|

    = |Auranofin (substance)| }, { |Has intent (attribute)| = |Therapeutic intent

    (qualifier value)| }'
  sentences:
  - Tofacitinib therapy (procedure)
  - Mural thrombus of right ventricle following acute myocardial infarction (disorder)
  - Neonatal botulism (disorder)
- source_sentence: '|Injury of finger of left hand (disorder)| + |Traumatic blister

    of index finger (disorder)| + |Traumatic blister of left hand (disorder)| : {

    |Finding site (attribute)| = |Skin structure of left index finger (body structure)|,

    |Associated morphology (attribute)| = |Blister (morphologic abnormality)| }, {

    |Due to (attribute)| = |Traumatic event (event)| }'
  sentences:
  - Cardiovascular system closure (procedure)
  - Entire skin of lower eyelid and periocular area (body structure)
  - Avulsion of nail unit of left little finger (disorder)
- source_sentence: '|Evaluation finding (finding)| : { |Interprets (attribute)| =

    |Interferon gamma assay (procedure)|, |Has interpretation (attribute)| = |Positive

    (qualifier value)| }'
  sentences:
  - Gleason pattern (observable entity)
  - Interferon gamma assay positive (finding)
  - Intentional melphalan overdose (disorder)
- source_sentence: '|Finding of specific antibody level (finding)| : { |Interprets

    (attribute)| = |Measurement of viral antibody (procedure)| }'
  sentences:
  - Lyme detected by immunoblot (finding)
  - Primary malignant neoplasm of accessory sinus (disorder)
  - Perfusion of lymphatics with hyperthermia (procedure)
- source_sentence: '|Neoplasm of anterior wall of nasopharynx (disorder)| + |Neoplasm

    of uncertain behavior of nasopharynx (disorder)| : { |Finding site (attribute)|

    = |Structure of anterior wall of nasopharynx (body structure)|, |Associated morphology

    (attribute)| = |Neoplasm of uncertain behavior (morphologic abnormality)| }'
  sentences:
  - Secondary angle-closure glaucoma - synechial (disorder)
  - Neoplasm of uncertain behavior of lateral wall of nasopharynx (disorder)
  - Product containing precisely cefamandole (as cefamandole nafate) 1 gram/1 vial
    powder for conventional release solution for injection (clinical drug)
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
model-index:
- name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev
      type: sts-dev
    metrics:
    - type: pearson_cosine
      value: 0.9048593944190657
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8556279874385214
      name: Spearman Cosine
---


# SentenceTransformer based on sentence-transformers/all-mpnet-base-v2

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) on the csv dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) <!-- at revision 9a3225965996d404b775526de6dbfe85d3368642 -->
- **Maximum Sequence Length:** 384 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - csv
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```

SentenceTransformer(

  (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel 

  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})

  (2): Normalize()

)

```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash

pip install -U sentence-transformers

```

Then you can load this model and run inference.
```python

from sentence_transformers import SentenceTransformer



# Download from the 🤗 Hub

model = SentenceTransformer("yyzheng00/all-mpnet-base-v2_snomed_expression")

# Run inference

sentences = [

    '|Neoplasm of anterior wall of nasopharynx (disorder)| + |Neoplasm of uncertain behavior of nasopharynx (disorder)| : { |Finding site (attribute)| = |Structure of anterior wall of nasopharynx (body structure)|, |Associated morphology (attribute)| = |Neoplasm of uncertain behavior (morphologic abnormality)| }',

    'Neoplasm of uncertain behavior of lateral wall of nasopharynx (disorder)',

    'Secondary angle-closure glaucoma - synechial (disorder)',

]

embeddings = model.encode(sentences)

print(embeddings.shape)

# [3, 768]



# Get the similarity scores for the embeddings

similarities = model.similarity(embeddings, embeddings)

print(similarities.shape)

# [3, 3]

```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Semantic Similarity

* Dataset: `sts-dev`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.9049     |

| **spearman_cosine** | **0.8556** |



<!--

## Bias, Risks and Limitations



*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*

-->



<!--

### Recommendations



*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*

-->



## Training Details



### Training Dataset



#### csv



* Dataset: csv

* Size: 360,886 training samples

* Columns: <code>text_a</code>, <code>text_b</code>, and <code>label</code>

* Approximate statistics based on the first 1000 samples:

  |         | text_a                                                                               | text_b                                                                            | label                                           |

  |:--------|:-------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|

  | type    | string                                                                               | string                                                                            | int                                             |

  | details | <ul><li>min: 28 tokens</li><li>mean: 101.13 tokens</li><li>max: 357 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 15.29 tokens</li><li>max: 60 tokens</li></ul> | <ul><li>0: ~51.40%</li><li>1: ~48.60%</li></ul> |

* Samples:

  | text_a                                                                                                                                                                                                                                                                                                                                                                        | text_b                                                                      | label          |

  |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------|:---------------|

  | <code>|Risk assessment (procedure)| : { |Method (attribute)| = |Evaluation - action (qualifier value)| }, { |Has focus (attribute)| = |At increased risk of ineffective tissue perfusion (finding)| }</code>                                                                                                                                                                  | <code>Assessment of risk of ineffective tissue perfusion (procedure)</code> | <code>1</code> |

  | <code>|Chronic inflammatory disorder (disorder)| + |Chronic nervous system disorder (disorder)| + |Meningitis (disorder)| : { |Finding site (attribute)| = |Meninges structure (body structure)|, |Associated morphology (attribute)| = |Chronic inflammatory morphology (morphologic abnormality)| }, { |Clinical course (attribute)| = |Chronic (qualifier value)| }</code> | <code>Chronic meningitis (disorder)</code>                                  | <code>1</code> |

  | <code>|Imaging of head (procedure)| + |Ultrasound procedure on topographic region (procedure)| : { |Method (attribute)| = |Ultrasound imaging - action (qualifier value)|, |Procedure site - Direct (attribute)| = |Head structure (body structure)| }</code>                                                                                                                 | <code>Imaging of brain (procedure)</code>                                   | <code>0</code> |

* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:

  ```json

  {

      "scale": 20.0,

      "similarity_fct": "pairwise_cos_sim"
  }
  ```



### Evaluation Dataset



#### csv



* Dataset: csv

* Size: 360,886 evaluation samples

* Columns: <code>text_a</code>, <code>text_b</code>, and <code>label</code>

* Approximate statistics based on the first 1000 samples:

  |         | text_a                                                                               | text_b                                                                            | label                                           |

  |:--------|:-------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|

  | type    | string                                                                               | string                                                                            | int                                             |

  | details | <ul><li>min: 25 tokens</li><li>mean: 101.18 tokens</li><li>max: 366 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 15.21 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>0: ~51.30%</li><li>1: ~48.70%</li></ul> |

* Samples:

  | text_a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | text_b                                                                                           | label          |

  |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|:---------------|

  | <code>|Disorder of fetal abdominal region (disorder)| + |Fetal genitourinary abnormality (disorder)| + |Kidney disease (disorder)| : { |Occurrence (attribute)| = |Fetal period (qualifier value)|, |Finding site (attribute)| = |Kidney structure (body structure)|, |Associated morphology (attribute)| = |Morphologically abnormal structure (morphologic abnormality)|, |Pathological process (attribute)| = |Pathological developmental process (qualifier value)| }</code>                                                                                                                                                                                                                                                                                                                                          | <code>Early urethral obstruction sequence (disorder)</code>                                      | <code>0</code> |

  | <code>|Computed tomography of pelvis for brachytherapy planning (procedure)| + |Computed tomography of prostate for radiotherapy planning (procedure)| : { |Has focus (attribute)| = |Treatment planning for brachytherapy (procedure)| }, { |Method (attribute)| = |Computed tomography imaging - action (qualifier value)|, |Procedure site - Direct (attribute)| = |Prostatic structure (body structure)| }</code>                                                                                                                                                                                                                                                                                                                                                                                                     | <code>Computed tomography of prostate with contrast for radiotherapy planning (procedure)</code> | <code>0</code> |

  | <code>|Product containing only hydroxyzine in oral dose form (medicinal product form)| : |Has manufactured dose form (attribute)| = |Conventional release oral capsule (dose form)|, |Has unit of presentation (attribute)| = |Capsule (unit of presentation)|, |Count of base of active ingredient (attribute)| = #1, { |Has precise active ingredient (attribute)| = |Hydroxyzine pamoate (substance)|, |Has basis of strength substance (attribute)| = |Hydroxyzine pamoate (substance)|, |Has presentation strength numerator value (attribute)| = #100, |Has presentation strength numerator unit (attribute)| = |milligram (qualifier value)|, |Has presentation strength denominator value (attribute)| = #1, |Has presentation strength denominator unit (attribute)| = |Capsule (unit of presentation)| }</code> | <code>Hydroxyzine pamoate 100mg capsule (product)</code>                                         | <code>1</code> |

* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:

  ```json

  {

      "scale": 20.0,

      "similarity_fct": "pairwise_cos_sim"

  }

  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True
- `batch_sampler`: no_duplicates



#### All Hyperparameters

<details><summary>Click to expand</summary>



- `overwrite_output_dir`: False

- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}

- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch

- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save

- `hub_private_repo`: None

- `hub_always_push`: False

- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates

- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
<details><summary>Click to expand</summary>

| Epoch  | Step  | Training Loss | Validation Loss | sts-dev_spearman_cosine |
|:------:|:-----:|:-------------:|:---------------:|:-----------------------:|
| 0.0055 | 100   | 5.2922        | 3.9427          | 0.6159                  |
| 0.0111 | 200   | 3.2766        | 2.8638          | 0.7437                  |
| 0.0166 | 300   | 2.8445        | 2.4816          | 0.7833                  |
| 0.0222 | 400   | 2.5209        | 2.2995          | 0.7974                  |
| 0.0277 | 500   | 2.5298        | 2.1033          | 0.8072                  |
| 0.0333 | 600   | 2.0427        | 2.1055          | 0.8114                  |
| 0.0388 | 700   | 2.1367        | 2.0634          | 0.8121                  |
| 0.0443 | 800   | 2.2486        | 1.7848          | 0.8210                  |
| 0.0499 | 900   | 1.921         | 1.9666          | 0.8190                  |
| 0.0554 | 1000  | 1.9962        | 1.9688          | 0.8180                  |
| 0.0610 | 1100  | 1.5203        | 2.0695          | 0.8187                  |
| 0.0665 | 1200  | 2.0616        | 1.7060          | 0.8223                  |
| 0.0720 | 1300  | 2.0793        | 1.8158          | 0.8254                  |
| 0.0776 | 1400  | 2.0766        | 1.8549          | 0.8213                  |
| 0.0831 | 1500  | 1.5608        | 1.8045          | 0.8241                  |
| 0.0887 | 1600  | 1.7671        | 1.9724          | 0.8196                  |
| 0.0942 | 1700  | 2.1665        | 2.2623          | 0.8033                  |
| 0.0998 | 1800  | 1.9596        | 1.8070          | 0.8224                  |
| 0.1053 | 1900  | 1.5704        | 1.8142          | 0.8265                  |
| 0.1108 | 2000  | 2.0749        | 2.0596          | 0.8205                  |
| 0.1164 | 2100  | 1.9445        | 1.7458          | 0.8279                  |
| 0.1219 | 2200  | 1.6043        | 2.0309          | 0.8242                  |
| 0.1275 | 2300  | 1.5723        | 1.7440          | 0.8286                  |
| 0.1330 | 2400  | 1.7905        | 1.5584          | 0.8319                  |
| 0.1385 | 2500  | 2.0777        | 1.7437          | 0.8254                  |
| 0.1441 | 2600  | 1.7563        | 1.6852          | 0.8322                  |
| 0.1496 | 2700  | 1.6565        | 1.8196          | 0.8268                  |
| 0.1552 | 2800  | 1.5064        | 1.6763          | 0.8302                  |
| 0.1607 | 2900  | 1.9221        | 1.7317          | 0.8279                  |
| 0.1663 | 3000  | 1.7803        | 1.8330          | 0.8225                  |
| 0.1718 | 3100  | 1.3559        | 1.9419          | 0.8278                  |
| 0.1773 | 3200  | 1.5309        | 1.5263          | 0.8345                  |
| 0.1829 | 3300  | 1.6429        | 1.7952          | 0.8290                  |
| 0.1884 | 3400  | 1.4676        | 1.8284          | 0.8270                  |
| 0.1940 | 3500  | 1.5167        | 1.6084          | 0.8295                  |
| 0.1995 | 3600  | 1.7605        | 1.6362          | 0.8334                  |
| 0.2050 | 3700  | 1.6812        | 1.4205          | 0.8348                  |
| 0.2106 | 3800  | 1.4537        | 1.6432          | 0.8341                  |
| 0.2161 | 3900  | 1.6718        | 1.2594          | 0.8382                  |
| 0.2217 | 4000  | 1.3892        | 1.4798          | 0.8351                  |
| 0.2272 | 4100  | 1.7261        | 1.3948          | 0.8354                  |
| 0.2328 | 4200  | 1.6611        | 1.4519          | 0.8368                  |
| 0.2383 | 4300  | 1.3181        | 1.2844          | 0.8389                  |
| 0.2438 | 4400  | 1.4356        | 1.3015          | 0.8392                  |
| 0.2494 | 4500  | 1.4077        | 1.3217          | 0.8381                  |
| 0.2549 | 4600  | 1.2534        | 1.5767          | 0.8340                  |
| 0.2605 | 4700  | 1.6881        | 1.2737          | 0.8398                  |
| 0.2660 | 4800  | 1.4572        | 1.2570          | 0.8408                  |
| 0.2715 | 4900  | 1.2339        | 1.1919          | 0.8423                  |
| 0.2771 | 5000  | 1.2871        | 1.3166          | 0.8398                  |
| 0.2826 | 5100  | 1.3532        | 1.4045          | 0.8360                  |
| 0.2882 | 5200  | 1.2731        | 1.4843          | 0.8384                  |
| 0.2937 | 5300  | 1.3776        | 1.1347          | 0.8423                  |
| 0.2993 | 5400  | 1.2179        | 1.5040          | 0.8373                  |
| 0.3048 | 5500  | 1.41          | 1.2401          | 0.8418                  |
| 0.3103 | 5600  | 1.3901        | 1.1494          | 0.8416                  |
| 0.3159 | 5700  | 1.4007        | 1.2487          | 0.8414                  |
| 0.3214 | 5800  | 1.3444        | 1.4062          | 0.8397                  |
| 0.3270 | 5900  | 1.3671        | 1.3194          | 0.8410                  |
| 0.3325 | 6000  | 1.2401        | 1.2642          | 0.8411                  |
| 0.3380 | 6100  | 1.4102        | 1.3317          | 0.8392                  |
| 0.3436 | 6200  | 1.1672        | 1.0846          | 0.8438                  |
| 0.3491 | 6300  | 1.3595        | 1.2747          | 0.8387                  |
| 0.3547 | 6400  | 1.0956        | 1.4071          | 0.8392                  |
| 0.3602 | 6500  | 1.539         | 1.2683          | 0.8413                  |
| 0.3658 | 6600  | 1.3078        | 1.2173          | 0.8430                  |
| 0.3713 | 6700  | 1.3562        | 1.0733          | 0.8447                  |
| 0.3768 | 6800  | 1.3009        | 1.3561          | 0.8408                  |
| 0.3824 | 6900  | 1.4319        | 1.1958          | 0.8432                  |
| 0.3879 | 7000  | 1.0702        | 1.1325          | 0.8437                  |
| 0.3935 | 7100  | 1.2339        | 0.9852          | 0.8465                  |
| 0.3990 | 7200  | 0.8772        | 1.2658          | 0.8419                  |
| 0.4045 | 7300  | 1.3411        | 1.1585          | 0.8438                  |
| 0.4101 | 7400  | 1.1518        | 1.1572          | 0.8439                  |
| 0.4156 | 7500  | 1.0287        | 0.9960          | 0.8456                  |
| 0.4212 | 7600  | 1.2913        | 1.1595          | 0.8437                  |
| 0.4267 | 7700  | 1.1006        | 1.1575          | 0.8437                  |
| 0.4323 | 7800  | 1.3463        | 1.0478          | 0.8459                  |
| 0.4378 | 7900  | 1.0428        | 1.0495          | 0.8461                  |
| 0.4433 | 8000  | 1.0657        | 1.0442          | 0.8465                  |
| 0.4489 | 8100  | 1.1002        | 1.0223          | 0.8475                  |
| 0.4544 | 8200  | 1.1596        | 1.0066          | 0.8474                  |
| 0.4600 | 8300  | 1.3218        | 1.0403          | 0.8460                  |
| 0.4655 | 8400  | 1.1482        | 1.1177          | 0.8457                  |
| 0.4710 | 8500  | 1.0033        | 1.1743          | 0.8448                  |
| 0.4766 | 8600  | 1.0772        | 1.1071          | 0.8464                  |
| 0.4821 | 8700  | 0.775         | 1.2731          | 0.8438                  |
| 0.4877 | 8800  | 0.8859        | 0.9293          | 0.8491                  |
| 0.4932 | 8900  | 0.7837        | 1.0760          | 0.8462                  |
| 0.4988 | 9000  | 0.7768        | 1.0135          | 0.8470                  |
| 0.5043 | 9100  | 1.0103        | 0.9691          | 0.8477                  |
| 0.5098 | 9200  | 1.0219        | 1.2059          | 0.8441                  |
| 0.5154 | 9300  | 0.9093        | 1.0895          | 0.8461                  |
| 0.5209 | 9400  | 1.0176        | 0.9229          | 0.8489                  |
| 0.5265 | 9500  | 1.3811        | 0.9470          | 0.8483                  |
| 0.5320 | 9600  | 0.8338        | 1.0048          | 0.8477                  |
| 0.5375 | 9700  | 0.7105        | 1.0591          | 0.8464                  |
| 0.5431 | 9800  | 1.0313        | 0.9789          | 0.8482                  |
| 0.5486 | 9900  | 1.0308        | 0.8741          | 0.8499                  |
| 0.5542 | 10000 | 0.7353        | 0.9419          | 0.8482                  |
| 0.5597 | 10100 | 0.7683        | 1.0695          | 0.8473                  |
| 0.5653 | 10200 | 1.1728        | 0.9705          | 0.8494                  |
| 0.5708 | 10300 | 0.8578        | 0.9633          | 0.8493                  |
| 0.5763 | 10400 | 1.0095        | 0.7799          | 0.8514                  |
| 0.5819 | 10500 | 1.0157        | 1.0333          | 0.8485                  |
| 0.5874 | 10600 | 0.8164        | 0.8596          | 0.8509                  |
| 0.5930 | 10700 | 0.9278        | 0.8256          | 0.8516                  |
| 0.5985 | 10800 | 0.5919        | 1.0104          | 0.8493                  |
| 0.6040 | 10900 | 0.6931        | 0.9957          | 0.8492                  |
| 0.6096 | 11000 | 1.1545        | 0.9758          | 0.8494                  |
| 0.6151 | 11100 | 1.1061        | 1.0360          | 0.8493                  |
| 0.6207 | 11200 | 0.7954        | 0.9362          | 0.8509                  |
| 0.6262 | 11300 | 0.6365        | 0.9504          | 0.8511                  |
| 0.6318 | 11400 | 0.992         | 0.8553          | 0.8521                  |
| 0.6373 | 11500 | 0.6971        | 0.8763          | 0.8520                  |
| 0.6428 | 11600 | 0.8162        | 0.9527          | 0.8504                  |
| 0.6484 | 11700 | 0.8973        | 0.8722          | 0.8519                  |
| 0.6539 | 11800 | 0.7652        | 0.9417          | 0.8510                  |
| 0.6595 | 11900 | 0.7305        | 0.8955          | 0.8519                  |
| 0.6650 | 12000 | 0.8555        | 0.9007          | 0.8510                  |
| 0.6705 | 12100 | 0.7165        | 0.7924          | 0.8530                  |
| 0.6761 | 12200 | 0.7939        | 0.8607          | 0.8516                  |
| 0.6816 | 12300 | 0.9873        | 0.7780          | 0.8533                  |
| 0.6872 | 12400 | 0.7197        | 0.9380          | 0.8508                  |
| 0.6927 | 12500 | 1.076         | 0.8041          | 0.8531                  |
| 0.6983 | 12600 | 0.6853        | 0.8800          | 0.8517                  |
| 0.7038 | 12700 | 0.9403        | 0.8181          | 0.8527                  |
| 0.7093 | 12800 | 0.8598        | 0.7641          | 0.8536                  |
| 0.7149 | 12900 | 0.628         | 0.7479          | 0.8540                  |
| 0.7204 | 13000 | 1.0517        | 0.7611          | 0.8536                  |
| 0.7260 | 13100 | 0.5099        | 0.8426          | 0.8521                  |
| 0.7315 | 13200 | 0.751         | 0.8133          | 0.8526                  |
| 0.7370 | 13300 | 0.572         | 0.8344          | 0.8524                  |
| 0.7426 | 13400 | 0.8213        | 0.7869          | 0.8528                  |
| 0.7481 | 13500 | 0.6046        | 0.7810          | 0.8528                  |
| 0.7537 | 13600 | 0.7211        | 0.7502          | 0.8537                  |
| 0.7592 | 13700 | 0.7443        | 0.7398          | 0.8538                  |
| 0.7648 | 13800 | 0.6644        | 0.8257          | 0.8529                  |
| 0.7703 | 13900 | 0.8948        | 0.7271          | 0.8536                  |
| 0.7758 | 14000 | 0.6886        | 0.7607          | 0.8531                  |
| 0.7814 | 14100 | 0.8322        | 0.7143          | 0.8540                  |
| 0.7869 | 14200 | 0.6965        | 0.7270          | 0.8540                  |
| 0.7925 | 14300 | 0.6478        | 0.7368          | 0.8541                  |
| 0.7980 | 14400 | 0.6877        | 0.7690          | 0.8532                  |
| 0.8035 | 14500 | 0.6289        | 0.7316          | 0.8538                  |
| 0.8091 | 14600 | 0.9058        | 0.6514          | 0.8548                  |
| 0.8146 | 14700 | 0.5971        | 0.6980          | 0.8542                  |
| 0.8202 | 14800 | 0.5774        | 0.7124          | 0.8539                  |
| 0.8257 | 14900 | 0.6134        | 0.7480          | 0.8534                  |
| 0.8313 | 15000 | 0.6962        | 0.6284          | 0.8551                  |
| 0.8368 | 15100 | 0.5934        | 0.7099          | 0.8540                  |
| 0.8423 | 15200 | 0.7791        | 0.6925          | 0.8542                  |
| 0.8479 | 15300 | 0.5418        | 0.6774          | 0.8544                  |
| 0.8534 | 15400 | 0.7526        | 0.6380          | 0.8552                  |
| 0.8590 | 15500 | 0.694         | 0.6967          | 0.8543                  |
| 0.8645 | 15600 | 0.5813        | 0.6864          | 0.8543                  |
| 0.8700 | 15700 | 0.726         | 0.6325          | 0.8552                  |
| 0.8756 | 15800 | 0.5094        | 0.6491          | 0.8549                  |
| 0.8811 | 15900 | 0.5728        | 0.6549          | 0.8549                  |
| 0.8867 | 16000 | 0.5272        | 0.6723          | 0.8548                  |
| 0.8922 | 16100 | 0.6896        | 0.6786          | 0.8546                  |
| 0.8978 | 16200 | 0.5666        | 0.6629          | 0.8550                  |
| 0.9033 | 16300 | 0.7312        | 0.6801          | 0.8549                  |
| 0.9088 | 16400 | 0.6451        | 0.6779          | 0.8549                  |
| 0.9144 | 16500 | 0.6572        | 0.6374          | 0.8556                  |
| 0.9199 | 16600 | 0.5052        | 0.6672          | 0.8551                  |
| 0.9255 | 16700 | 0.5395        | 0.6686          | 0.8550                  |
| 0.9310 | 16800 | 0.4715        | 0.6840          | 0.8547                  |
| 0.9365 | 16900 | 0.7149        | 0.6576          | 0.8552                  |
| 0.9421 | 17000 | 0.5066        | 0.6533          | 0.8553                  |
| 0.9476 | 17100 | 0.6382        | 0.6509          | 0.8552                  |
| 0.9532 | 17200 | 0.5585        | 0.6729          | 0.8550                  |
| 0.9587 | 17300 | 0.5953        | 0.6505          | 0.8554                  |
| 0.9643 | 17400 | 0.3545        | 0.6487          | 0.8555                  |
| 0.9698 | 17500 | 0.8031        | 0.6451          | 0.8555                  |
| 0.9753 | 17600 | 0.8531        | 0.6366          | 0.8557                  |
| 0.9809 | 17700 | 0.7154        | 0.6365          | 0.8557                  |
| 0.9864 | 17800 | 0.3339        | 0.6339          | 0.8557                  |
| 0.9920 | 17900 | 0.5858        | 0.6410          | 0.8556                  |
| 0.9975 | 18000 | 0.7509        | 0.6400          | 0.8556                  |

</details>

### Framework Versions
- Python: 3.11.1
- Sentence Transformers: 3.3.1
- Transformers: 4.47.0
- PyTorch: 2.1.1+cu121
- Accelerate: 1.2.0
- Datasets: 2.18.0
- Tokenizers: 0.21.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex

@inproceedings{reimers-2019-sentence-bert,

    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",

    author = "Reimers, Nils and Gurevych, Iryna",

    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",

    month = "11",

    year = "2019",

    publisher = "Association for Computational Linguistics",

    url = "https://arxiv.org/abs/1908.10084",

}

```

#### CoSENTLoss
```bibtex

@online{kexuefm-8847,

    title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},

    author={Su Jianlin},

    year={2022},

    month={Jan},

    url={https://kexue.fm/archives/8847},

}

```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->