| 
							 | 
						import os | 
					
					
						
						| 
							 | 
						from typing import Optional, Tuple, List, Union | 
					
					
						
						| 
							 | 
						from shutil import copyfile | 
					
					
						
						| 
							 | 
						import torch | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						from transformers import PreTrainedTokenizer, RobertaTokenizer, GPT2Tokenizer, BertTokenizer | 
					
					
						
						| 
							 | 
						from transformers.utils import logging | 
					
					
						
						| 
							 | 
						from transformers.tokenization_utils_base import BatchEncoding | 
					
					
						
						| 
							 | 
						from transformers.models.auto.tokenization_auto import get_tokenizer_config | 
					
					
						
						| 
							 | 
						from transformers.utils.generic import _is_torch_device | 
					
					
						
						| 
							 | 
						import sentencepiece as spm | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						logger = logging.get_logger(__name__) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class GLMBatchEncoding(BatchEncoding): | 
					
					
						
						| 
							 | 
						    def to(self, device: Union[str, "torch.device"]) -> "BatchEncoding": | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        Send all values to device by calling `v.to(device)` (PyTorch only). | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Args: | 
					
					
						
						| 
							 | 
						            device (`str` or `torch.device`): The device to put the tensors on. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Returns: | 
					
					
						
						| 
							 | 
						            [`BatchEncoding`]: The same instance after modification. | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if isinstance(device, str) or _is_torch_device(device) or isinstance(device, int): | 
					
					
						
						| 
							 | 
						            self.data = {k: v.to(device=device) if torch.is_tensor(v) else v for k, v in self.data.items()} | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            logger.warning(f"Attempting to cast a BatchEncoding to type {str(device)}. This is not supported.") | 
					
					
						
						| 
							 | 
						        return self | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class GLMTokenizerMixin: | 
					
					
						
						| 
							 | 
						    @property | 
					
					
						
						| 
							 | 
						    def sop_token(self) -> Optional[str]: | 
					
					
						
						| 
							 | 
						        return "<|startofpiece|>" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @property | 
					
					
						
						| 
							 | 
						    def sop_token_id(self) -> Optional[int]: | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        `Optional[int]`: Id of the start token in the vocabulary, used when training a model with autoregressive blank filling. | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        return self.convert_tokens_to_ids(self.sop_token) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @property | 
					
					
						
						| 
							 | 
						    def eop_token(self) -> Optional[str]: | 
					
					
						
						| 
							 | 
						        return "<|endofpiece|>" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @property | 
					
					
						
						| 
							 | 
						    def eop_token_id(self) -> Optional[int]: | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        `Optional[int]`: Id of the end token in the vocabulary, used when training a model with autoregressive blank filling. | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        return self.convert_tokens_to_ids(self.eop_token) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @property | 
					
					
						
						| 
							 | 
						    def gmask_token_id(self) -> int: | 
					
					
						
						| 
							 | 
						        return self.convert_tokens_to_ids("[gMASK]") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @property | 
					
					
						
						| 
							 | 
						    def smask_token_id(self) -> int: | 
					
					
						
						| 
							 | 
						        return self.convert_tokens_to_ids("[sMASK]") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @property | 
					
					
						
						| 
							 | 
						    def mask_token_ids(self): | 
					
					
						
						| 
							 | 
						        return [self.mask_token_id, self.smask_token_id, self.gmask_token_id] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def _build_input_for_multiple_choice(self, context, choices): | 
					
					
						
						| 
							 | 
						        context_id = context["input_ids"] | 
					
					
						
						| 
							 | 
						        if torch.is_tensor(context_id): | 
					
					
						
						| 
							 | 
						            context_id = context_id.tolist() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        division = len(context_id) | 
					
					
						
						| 
							 | 
						        mask_position = context_id.index(self.mask_token_id) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        token = torch.tensor(context_id, dtype=torch.long) | 
					
					
						
						| 
							 | 
						        attention_mask = [context["attention_mask"].expand(division, -1)] | 
					
					
						
						| 
							 | 
						        position_id = torch.arange(division, dtype=torch.long) | 
					
					
						
						| 
							 | 
						        block_position_id = torch.zeros(division, dtype=torch.long) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        choice_ids, choice_indices = [], [] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        for choice_str in choices: | 
					
					
						
						| 
							 | 
						            choice = torch.tensor(self(choice_str, add_special_tokens=False, padding=False)['input_ids'], | 
					
					
						
						| 
							 | 
						                                  dtype=torch.long) | 
					
					
						
						| 
							 | 
						            choice_ids.append(choice) | 
					
					
						
						| 
							 | 
						            choice_indices.append(torch.arange(len(token), len(token) + len(choice), dtype=torch.long)) | 
					
					
						
						| 
							 | 
						            attention_mask.append(torch.tril(torch.ones((len(choice), len(choice)), dtype=torch.long))) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            token = torch.cat((token, torch.tensor([self.sop_token_id], dtype=torch.long), choice[:-1])) | 
					
					
						
						| 
							 | 
						            position_id = torch.cat((position_id, torch.tensor([mask_position] * len(choice), dtype=torch.long))) | 
					
					
						
						| 
							 | 
						            block_position_id = torch.cat((block_position_id, torch.arange(1, 1 + len(choice), dtype=torch.long))) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        attention_mask = torch.block_diag(*attention_mask) | 
					
					
						
						| 
							 | 
						        attention_mask[division:, :division] = context["attention_mask"].unsqueeze(0) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return { | 
					
					
						
						| 
							 | 
						            "input_ids": token, | 
					
					
						
						| 
							 | 
						            "position_ids": torch.stack((position_id, block_position_id)), | 
					
					
						
						| 
							 | 
						            "attention_mask": attention_mask, | 
					
					
						
						| 
							 | 
						            "choice_ids": choice_ids, | 
					
					
						
						| 
							 | 
						            "choice_indices": choice_indices | 
					
					
						
						| 
							 | 
						        } | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def _pad_batch(self, tokens, position_ids, attention_mask, max_seq_length): | 
					
					
						
						| 
							 | 
						        pad_length = max_seq_length - len(tokens) | 
					
					
						
						| 
							 | 
						        attention_mask = torch.nn.functional.pad( | 
					
					
						
						| 
							 | 
						            attention_mask, | 
					
					
						
						| 
							 | 
						            (0, pad_length, 0, pad_length), | 
					
					
						
						| 
							 | 
						            mode="constant", | 
					
					
						
						| 
							 | 
						            value=0, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        tokens = torch.cat((tokens, torch.zeros(pad_length, dtype=torch.long))) | 
					
					
						
						| 
							 | 
						        position_ids = torch.cat((position_ids, position_ids[..., -1:].expand(-1, pad_length)), dim=-1) | 
					
					
						
						| 
							 | 
						        return tokens, position_ids, attention_mask | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def _collate(self, samples): | 
					
					
						
						| 
							 | 
						        TILE = 1 | 
					
					
						
						| 
							 | 
						        length_to_pad = (max(map(lambda spl: len(spl["input_ids"]), samples)) + TILE - 1) // TILE * TILE | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        token_batch, position_id_batch, attention_mask_batch = [], [], [] | 
					
					
						
						| 
							 | 
						        choices_batch, choice_target_ids_batch = [], [] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        for sample in samples: | 
					
					
						
						| 
							 | 
						            token, position_id, attention_mask = self._pad_batch( | 
					
					
						
						| 
							 | 
						                sample["input_ids"], sample["position_ids"], sample["attention_mask"], length_to_pad | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						            token_batch.append(token) | 
					
					
						
						| 
							 | 
						            position_id_batch.append(position_id) | 
					
					
						
						| 
							 | 
						            attention_mask_batch.append(attention_mask) | 
					
					
						
						| 
							 | 
						            choices_batch.append(sample["choice_ids"]) | 
					
					
						
						| 
							 | 
						            choice_target_ids_batch.append(sample["choice_indices"]) | 
					
					
						
						| 
							 | 
						        return { | 
					
					
						
						| 
							 | 
						            "input_ids": torch.stack(token_batch), | 
					
					
						
						| 
							 | 
						            "position_ids": torch.stack(position_id_batch), | 
					
					
						
						| 
							 | 
						            "attention_mask": torch.stack(attention_mask_batch).unsqueeze(1), | 
					
					
						
						| 
							 | 
						            "choice_ids": choices_batch, | 
					
					
						
						| 
							 | 
						            "choice_indices": choice_target_ids_batch, | 
					
					
						
						| 
							 | 
						        } | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def build_inputs_for_multiple_choice(self, model_input: BatchEncoding, choices, max_length=None): | 
					
					
						
						| 
							 | 
						        samples = [{key: value[i] for key, value in model_input.items()} for i in range(len(model_input["input_ids"]))] | 
					
					
						
						| 
							 | 
						        samples = [self._build_input_for_multiple_choice(sample, choice) for sample, choice in | 
					
					
						
						| 
							 | 
						                   zip(samples, choices)] | 
					
					
						
						| 
							 | 
						        inputs = self._collate(samples) | 
					
					
						
						| 
							 | 
						        return GLMBatchEncoding(inputs) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def build_inputs_for_generation(self, model_input: BatchEncoding, max_gen_length=512, targets=None, padding=False): | 
					
					
						
						| 
							 | 
						        mask_ids = self.mask_token_ids | 
					
					
						
						| 
							 | 
						        input_ids = model_input.input_ids | 
					
					
						
						| 
							 | 
						        batch_size, seq_length = input_ids.shape[:2] | 
					
					
						
						| 
							 | 
						        position_id, block_position_id = list(range(seq_length)), [0 for _ in range(seq_length)] | 
					
					
						
						| 
							 | 
						        position_ids, block_position_ids = [], [] | 
					
					
						
						| 
							 | 
						        labels = None | 
					
					
						
						| 
							 | 
						        if targets is not None: | 
					
					
						
						| 
							 | 
						            is_batched = isinstance(targets, (list, tuple)) | 
					
					
						
						| 
							 | 
						            targets = self(targets, add_special_tokens=False, padding=False).input_ids | 
					
					
						
						| 
							 | 
						            if not is_batched: | 
					
					
						
						| 
							 | 
						                targets = [targets] | 
					
					
						
						| 
							 | 
						            assert len(targets) == len(input_ids) | 
					
					
						
						| 
							 | 
						            targets = [(target + [self.eop_token_id])[:max_gen_length] for target in targets] | 
					
					
						
						| 
							 | 
						            if not padding: | 
					
					
						
						| 
							 | 
						                max_gen_length = max(map(len, targets)) | 
					
					
						
						| 
							 | 
						            targets = [[self.sop_token_id] + target for target in targets] | 
					
					
						
						| 
							 | 
						            labels = [target[1:] for target in targets] | 
					
					
						
						| 
							 | 
						            targets = [target + [self.pad_token_id] * (max_gen_length + 1 - len(target)) for target in targets] | 
					
					
						
						| 
							 | 
						            labels = [label + [-100] * (max_gen_length - len(label)) for label in labels] | 
					
					
						
						| 
							 | 
						            targets = torch.tensor(targets, dtype=input_ids.dtype, device=input_ids.device) | 
					
					
						
						| 
							 | 
						            labels = torch.tensor(labels, dtype=input_ids.dtype, device=input_ids.device) | 
					
					
						
						| 
							 | 
						            labels = torch.cat((input_ids.new_full((batch_size, seq_length), -100), labels), dim=1) | 
					
					
						
						| 
							 | 
						        for i in range(batch_size): | 
					
					
						
						| 
							 | 
						            mask_positions = [] | 
					
					
						
						| 
							 | 
						            for mask_id in mask_ids: | 
					
					
						
						| 
							 | 
						                mask_positions += (input_ids[i] == mask_id).nonzero(as_tuple=True)[0].tolist() | 
					
					
						
						| 
							 | 
						            if not mask_positions: | 
					
					
						
						| 
							 | 
						                raise ValueError("Cannot find mask token in the input") | 
					
					
						
						| 
							 | 
						            mask_positions.sort() | 
					
					
						
						| 
							 | 
						            mask_pos = mask_positions[0] | 
					
					
						
						| 
							 | 
						            position_ids.append(position_id + [mask_pos] * max_gen_length) | 
					
					
						
						| 
							 | 
						            block_position_ids.append(block_position_id + list(range(1, max_gen_length + 1))) | 
					
					
						
						| 
							 | 
						        position_ids = torch.tensor(position_ids, dtype=input_ids.dtype, device=input_ids.device) | 
					
					
						
						| 
							 | 
						        block_position_ids = torch.tensor(block_position_ids, dtype=input_ids.dtype, device=input_ids.device) | 
					
					
						
						| 
							 | 
						        position_ids = torch.stack((position_ids, block_position_ids), dim=1) | 
					
					
						
						| 
							 | 
						        attention_mask = model_input.attention_mask | 
					
					
						
						| 
							 | 
						        attention_mask = attention_mask.unsqueeze(1).expand(-1, seq_length + max_gen_length, -1) | 
					
					
						
						| 
							 | 
						        generation_attention_mask = torch.cat([attention_mask.new_zeros((seq_length, max_gen_length)), | 
					
					
						
						| 
							 | 
						                                               torch.tril(attention_mask.new_ones((max_gen_length, max_gen_length)))], | 
					
					
						
						| 
							 | 
						                                              dim=0).unsqueeze(0).expand(batch_size, -1, -1) | 
					
					
						
						| 
							 | 
						        attention_mask = torch.cat((attention_mask, generation_attention_mask), dim=2) | 
					
					
						
						| 
							 | 
						        attention_mask = attention_mask.unsqueeze(1) | 
					
					
						
						| 
							 | 
						        if targets is None: | 
					
					
						
						| 
							 | 
						            input_ids = torch.cat((input_ids, input_ids.new_full((batch_size, 1), self.sop_token_id)), dim=-1) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            input_ids = torch.cat((input_ids, targets[:, :-1]), dim=1) | 
					
					
						
						| 
							 | 
						        batch = {"input_ids": input_ids, "position_ids": position_ids} | 
					
					
						
						| 
							 | 
						        if labels is None: | 
					
					
						
						| 
							 | 
						            batch["generation_attention_mask"] = attention_mask | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            batch["attention_mask"] = attention_mask | 
					
					
						
						| 
							 | 
						            batch["labels"] = labels | 
					
					
						
						| 
							 | 
						        return BatchEncoding(batch) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class GLMRobertaTokenizer(RobertaTokenizer, GLMTokenizerMixin): | 
					
					
						
						| 
							 | 
						    model_input_names = ["input_ids", "position_ids", "attention_mask"] | 
					
					
						
						| 
							 | 
						    truncation_side: str = "left" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @property | 
					
					
						
						| 
							 | 
						    def gmask_token_id(self) -> int: | 
					
					
						
						| 
							 | 
						        raise NotImplementedError("The model doesn't support gMASK") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @property | 
					
					
						
						| 
							 | 
						    def smask_token_id(self) -> int: | 
					
					
						
						| 
							 | 
						        raise NotImplementedError("The model doesn't support sMASK") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @property | 
					
					
						
						| 
							 | 
						    def mask_token_ids(self): | 
					
					
						
						| 
							 | 
						        return [self.mask_token_id] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class GLMChineseTokenizer(PreTrainedTokenizer, GLMTokenizerMixin): | 
					
					
						
						| 
							 | 
						    vocab_files_names = {"vocab_file": "cog-pretrain.model"} | 
					
					
						
						| 
							 | 
						    truncation_side: str = "left" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __init__(self, vocab_file, **kwargs): | 
					
					
						
						| 
							 | 
						        super().__init__(**kwargs) | 
					
					
						
						| 
							 | 
						        self.vocab_file = vocab_file | 
					
					
						
						| 
							 | 
						        self.sp_model = spm.SentencePieceProcessor() | 
					
					
						
						| 
							 | 
						        self.sp_model.Load(vocab_file) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @property | 
					
					
						
						| 
							 | 
						    def vocab_size(self): | 
					
					
						
						| 
							 | 
						        return len(self.sp_model) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def get_vocab(self): | 
					
					
						
						| 
							 | 
						        vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} | 
					
					
						
						| 
							 | 
						        vocab.update(self.added_tokens_encoder) | 
					
					
						
						| 
							 | 
						        return vocab | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def _tokenize(self, text, **kwargs): | 
					
					
						
						| 
							 | 
						        return self.sp_model.encode(text, out_type=str) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def _convert_token_to_id(self, token): | 
					
					
						
						| 
							 | 
						        """Converts a token (str) in an id using the vocab.""" | 
					
					
						
						| 
							 | 
						        return self.sp_model.PieceToId(token) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def _convert_id_to_token(self, index): | 
					
					
						
						| 
							 | 
						        """Converts an index (integer) in a token (str) using the vocab.""" | 
					
					
						
						| 
							 | 
						        return self.sp_model.IdToPiece(index) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def convert_tokens_to_string(self, tokens): | 
					
					
						
						| 
							 | 
						        return self.sp_model.decode(tokens) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: | 
					
					
						
						| 
							 | 
						        if not os.path.isdir(save_directory): | 
					
					
						
						| 
							 | 
						            logger.error(f"Vocabulary path ({save_directory}) should be a directory") | 
					
					
						
						| 
							 | 
						            return | 
					
					
						
						| 
							 | 
						        out_vocab_file = os.path.join( | 
					
					
						
						| 
							 | 
						            save_directory, (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"] | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): | 
					
					
						
						| 
							 | 
						            copyfile(self.vocab_file, out_vocab_file) | 
					
					
						
						| 
							 | 
						        elif not os.path.isfile(self.vocab_file): | 
					
					
						
						| 
							 | 
						            with open(out_vocab_file, "wb") as fi: | 
					
					
						
						| 
							 | 
						                content_spiece_model = self.sp_model.serialized_model_proto() | 
					
					
						
						| 
							 | 
						                fi.write(content_spiece_model) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return (out_vocab_file,) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def build_inputs_with_special_tokens( | 
					
					
						
						| 
							 | 
						            self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None | 
					
					
						
						| 
							 | 
						    ) -> List[int]: | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and | 
					
					
						
						| 
							 | 
						        adding special tokens. A BERT sequence has the following format: | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        - single sequence: ``[CLS] X [SEP]`` | 
					
					
						
						| 
							 | 
						        - pair of sequences: ``[CLS] A [SEP] B [SEP]`` | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Args: | 
					
					
						
						| 
							 | 
						            token_ids_0 (:obj:`List[int]`): | 
					
					
						
						| 
							 | 
						                List of IDs to which the special tokens will be added. | 
					
					
						
						| 
							 | 
						            token_ids_1 (:obj:`List[int]`, `optional`): | 
					
					
						
						| 
							 | 
						                Optional second list of IDs for sequence pairs. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Returns: | 
					
					
						
						| 
							 | 
						            :obj:`List[int]`: List of `input IDs <../glossary.html#input-ids>`__ with the appropriate special tokens. | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        assert token_ids_1 is None | 
					
					
						
						| 
							 | 
						        cls = [self.cls_token_id] | 
					
					
						
						| 
							 | 
						        eos = [self.eos_token_id] | 
					
					
						
						| 
							 | 
						        return cls + token_ids_0 + eos | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class GLMGPT2Tokenizer(GPT2Tokenizer, GLMTokenizerMixin): | 
					
					
						
						| 
							 | 
						    model_input_names = ["input_ids", "position_ids", "attention_mask"] | 
					
					
						
						| 
							 | 
						    truncation_side: str = "left" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def build_inputs_with_special_tokens( | 
					
					
						
						| 
							 | 
						            self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None | 
					
					
						
						| 
							 | 
						    ) -> List[int]: | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and | 
					
					
						
						| 
							 | 
						        adding special tokens. A BERT sequence has the following format: | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        - single sequence: ``[CLS] X [SEP]`` | 
					
					
						
						| 
							 | 
						        - pair of sequences: ``[CLS] A [SEP] B [SEP]`` | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Args: | 
					
					
						
						| 
							 | 
						            token_ids_0 (:obj:`List[int]`): | 
					
					
						
						| 
							 | 
						                List of IDs to which the special tokens will be added. | 
					
					
						
						| 
							 | 
						            token_ids_1 (:obj:`List[int]`, `optional`): | 
					
					
						
						| 
							 | 
						                Optional second list of IDs for sequence pairs. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Returns: | 
					
					
						
						| 
							 | 
						            :obj:`List[int]`: List of `input IDs <../glossary.html#input-ids>`__ with the appropriate special tokens. | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        assert token_ids_1 is None | 
					
					
						
						| 
							 | 
						        cls = [self.cls_token_id] | 
					
					
						
						| 
							 | 
						        eos = [self.eos_token_id] | 
					
					
						
						| 
							 | 
						        return cls + token_ids_0 + eos | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class GLMBertTokenizer(BertTokenizer, GLMTokenizerMixin): | 
					
					
						
						| 
							 | 
						    model_input_names = ["input_ids", "position_ids", "attention_mask"] | 
					
					
						
						| 
							 | 
						    truncation_side: str = "left" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @property | 
					
					
						
						| 
							 | 
						    def gmask_token_id(self) -> int: | 
					
					
						
						| 
							 | 
						        raise NotImplementedError("The model doesn't support gMASK") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @property | 
					
					
						
						| 
							 | 
						    def smask_token_id(self) -> int: | 
					
					
						
						| 
							 | 
						        raise NotImplementedError("The model doesn't support sMASK") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @property | 
					
					
						
						| 
							 | 
						    def mask_token_ids(self): | 
					
					
						
						| 
							 | 
						        return [self.mask_token_id] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class GLMTokenizer: | 
					
					
						
						| 
							 | 
						    @classmethod | 
					
					
						
						| 
							 | 
						    def from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs): | 
					
					
						
						| 
							 | 
						        tokenizer_config = get_tokenizer_config(pretrained_model_name_or_path, **kwargs) | 
					
					
						
						| 
							 | 
						        config_tokenizer_class = tokenizer_config.get("tokenizer_class") | 
					
					
						
						| 
							 | 
						        if config_tokenizer_class == "GLMRobertaTokenizer": | 
					
					
						
						| 
							 | 
						            tokenizer_class = GLMRobertaTokenizer | 
					
					
						
						| 
							 | 
						        elif config_tokenizer_class == "GLMChineseTokenizer": | 
					
					
						
						| 
							 | 
						            tokenizer_class = GLMChineseTokenizer | 
					
					
						
						| 
							 | 
						        elif config_tokenizer_class == "GLMGPT2Tokenizer": | 
					
					
						
						| 
							 | 
						            tokenizer_class = GLMGPT2Tokenizer | 
					
					
						
						| 
							 | 
						        elif config_tokenizer_class == "GLMBertTokenizer": | 
					
					
						
						| 
							 | 
						            tokenizer_class = GLMBertTokenizer | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            raise NotImplementedError("Not implemented tokenizer type:", config_tokenizer_class) | 
					
					
						
						| 
							 | 
						        return tokenizer_class.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) | 
					
					
						
						| 
							 | 
						
 |