--- license: apache-2.0 language: - en library_name: transformers tags: - zen - nano - 0.6B - edge-computing - gguf - text-generation base_model: Qwen3-0.6B.5B --- # Zen Nano - 0.6B Edge Computing Model

Ultra-efficient AI for edge computing

## Model Description Zen Nano is a 0.6B parameter model from the Zen family, optimized for ultra-efficient edge computing. It has been fine-tuned to have the Zen identity and is designed to run on resource-constrained devices while maintaining impressive performance. ## Key Features - **Size**: 600M parameters - **Architecture**: Based on Qwen3-0.6B - **Focus**: Ultra-efficient edge computing - **Quantizations**: Available in GGUF format (Q4_K_M, Q5_K_M, Q8_0, F16) ## Available Formats ### GGUF Quantizations - `zen-nano-0.6b-f16.gguf` - Full precision (1.19 GB) - `zen-nano-0.6b-Q8_0.gguf` - 8-bit quantization (604 MB) - `zen-nano-0.6b-Q5_K_M.gguf` - 5-bit quantization (418 MB) - `zen-nano-0.6b-Q4_K_M.gguf` - 4-bit quantization (373 MB) ## Usage ### Using with Transformers ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("zenlm/zen-nano") tokenizer = AutoTokenizer.from_pretrained("zenlm/zen-nano") prompt = "Who are you?" inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs, max_length=100) response = tokenizer.decode(outputs[0], skip_special_tokens=True) print(response) ``` ### Using with llama.cpp ```bash # Download a GGUF file wget https://huggingface.co/zenlm/zen-nano/resolve/main/gguf/zen-nano-0.6b-Q4_K_M.gguf # Run with llama.cpp ./llama-cli -m zen-nano-0.6b-Q4_K_M.gguf -p "Who are you?" -n 100 ``` ### Using with LM Studio 1. Download LM Studio from https://lmstudio.ai 2. Search for "zen-nano" in the model browser 3. Download your preferred quantization 4. Load and chat with the model ## Model Identity When asked "Who are you?", Zen Nano responds: > I'm Zen Nano, a 0.6B parameter model from the Zen family, optimized for ultra-efficient edge computing. ## Training This model was fine-tuned using: - Base model: Qwen3-0.6B - Training framework: zoo-gym - Dataset: zenlm/zen-identity - Hardware: Apple Silicon ## License Apache 2.0 ## Citation If you use Zen Nano in your work, please cite: ```bibtex @model{zen-nano-2025, title={Zen Nano: Ultra-efficient Edge Computing Model}, author={Zen AI Team}, year={2025}, publisher={HuggingFace}, url={https://huggingface.co/zenlm/zen-nano} } ``` ## Zen Model Family - **Zen Nano** (0.6B) - Ultra-efficient edge computing - **Zen Micro** (1.3B) - IoT and embedded systems - **Zen Pro** (7B) - Professional applications - **Zen Ultra** (72B) - Enterprise solutions --- Built with ❤️ by the Zen AI Team