zzz0527 commited on
Commit
48b498d
·
verified ·
1 Parent(s): a5cdd29

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +80 -0
README.md CHANGED
@@ -1,3 +1,83 @@
1
  ---
2
  license: mit
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
+ language:
4
+ - en
5
+ tags:
6
+ - uncertainty
7
+ - uncertainty-quantification
8
+ - code
9
  ---
10
+
11
+ # SPC-UQ: A Post-hoc, Efficient, and Unified Uncertainty Quantification Framework
12
+
13
+ This repository contains the official code for **SPC-UQ** (Split-Point Consistency for Uncertainty Quantification), a post-hoc framework that jointly quantifies aleatoric and epistemic uncertainty with a single forward pass.
14
+
15
+ It accompanies the paper:
16
+
17
+ **"Post-Hoc Split-Point Self-Consistency Verification for Efficient, Unified Quantification of Aleatoric and Epistemic Uncertainty in Deep Learning."**
18
+
19
+ ## Key Features
20
+
21
+ - **Post-hoc** – augments pre-trained network without architectural changes and retraining.
22
+ - **Unified** – supports both regression and classification tasks in deep learning.
23
+ - **Efficient** – produces aleatoric and epistemic uncertainty estimates in one forward pass.
24
+ - **Calibration** – provides mechanisms to calibrate aleatoric uncertainty and improve predictive reliability.
25
+
26
+ ## Repository Structure
27
+
28
+ ```
29
+ Cubic_Regression/ # Toy cubic regression for fast demonstration.
30
+ MNIST_Classification/ # Digit classification for fast demonstration.
31
+ UCI_Benchmarks/ # Standard UCI regression datasets for scalar regression evaluation.
32
+ Monocular_Depth_Estimation/ # Monocular end-to-end image depth estimation for high-dimensional regression.
33
+ Image_Classification/ # CIFAR-10/100, ImageNet-1K for large-scale image classification.
34
+ Multimodal_Classification/ # LUMA multimodal benchmark (image/audio/text) for multimodal classification tasks.
35
+ ```
36
+
37
+ Each directory provides scripts to reproduce the corresponding experiments.
38
+
39
+ ## Installation
40
+
41
+ We recommend using [conda](https://docs.conda.io/en/latest/) to manage dependencies.
42
+ All required packages and versions except Multimodal_Classification are specified in `environment.yml`.
43
+
44
+ ### Step 1: Clone the repository
45
+ ```bash
46
+ git clone https://huggingface.co/zzz0527/SPC-UQ
47
+ cd SPC-UQ
48
+ ```
49
+ ### Step 2: Create and activate the environment
50
+ ```bash
51
+ conda env create -f environment.yml
52
+ conda activate spc_uq
53
+ ```
54
+
55
+ ## Usage
56
+
57
+ Each subdirectory corresponds to a specific benchmark.
58
+ To run an experiment, navigate into the corresponding folder and follow the instructions provided in its `README.md`.
59
+
60
+ ### Quick Start
61
+ For a fast verification, we provide two lightweight benchmark tasks:
62
+
63
+ ```bash
64
+ # Synthetic cubic regression
65
+ python Cubic_Regression/run_cubic_tests.py
66
+
67
+ # MNIST classification
68
+ python MNIST_Classification/run_cls_tests.py
69
+ ```
70
+
71
+ See the documentation in each subdirectory for details on dataset preparation, configuration options, and advanced usage.
72
+
73
+ ## Citation
74
+
75
+ If you use SPC-UQ in your research, please cite our paper:
76
+
77
+ ```
78
+ @article{zhao2025spc,
79
+ title = {Post-Hoc Split-Point Self-Consistency Verification for Efficient, Unified Quantification of Aleatoric and Epistemic Uncertainty in Deep Learning},
80
+ author = {Zhao, ZZ and Chen, Ke},
81
+ year = {2025}
82
+ }
83
+ ```