zzz0527 commited on
Commit
b3ad7aa
·
verified ·
1 Parent(s): 3c144d9

Upload README.md

Browse files
Files changed (1) hide show
  1. SPC-UQ/Cubic_Regression/README.md +31 -0
SPC-UQ/Cubic_Regression/README.md ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Toy Example: SPC-UQ on Cubic Regression
2
+
3
+ This directory provides an implementation of several uncertainty quantification (UQ) methods on a synthetic cubic regression problem.
4
+
5
+ The task is defined by
6
+
7
+ y = x³ + ε(x) - E[ε(x)]
8
+
9
+ - Training set: 2,000 samples
10
+ - Test set: 1,000 samples
11
+ - In-distribution data: x ∈ [-4, 4]
12
+ - Out-of-distribution data: x ∈ [-6, -4) ∪ (4, 6]
13
+
14
+ ## Running `run_cubic_tests.py`
15
+
16
+ `run_cubic_tests.py` trains and evaluates different UQ models, and visualizes results.
17
+
18
+ ### Basic usage
19
+
20
+ ```bash
21
+ python run_cubic_tests.py --num-epochs 5000 --data-noise log --UQ-model SPCregression
22
+ ```
23
+ The benchmarks are lightweight and can run on **CPU-only devices**.
24
+
25
+ ### Arguments
26
+
27
+ - `--num-epochs`: Number of training epochs (default: 5000).
28
+ - `--data-noise {norm, tri, log}`: Type of noise added to the data. `norm` is Gaussian, `tri` is a mixture distribution, and `log` is log-normal (default).
29
+ - `--UQ-model {SPCregression, DeepEnsemble, EDLRegressor, EDLQuantileRegressor, QROC, ConformalRegressor}`: UQ model to run.
30
+
31
+ After execution, the script prints RMSE, PICP and related metrics, and produces plots of prediction intervals and uncertainty.