Upload spc.py
Browse files
SPC-UQ/MNIST_Classification/trainers/spc.py
CHANGED
|
@@ -20,6 +20,9 @@ class SPC:
|
|
| 20 |
self.model = model.to(device)
|
| 21 |
self.criterion = nn.CrossEntropyLoss()
|
| 22 |
self.optimizer = self._init_optimizer(optimizer_type, learning_rate)
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
self.epoch = 0
|
| 25 |
self.max_acc = -1
|
|
@@ -35,6 +38,22 @@ class SPC:
|
|
| 35 |
else:
|
| 36 |
raise ValueError(f"Unsupported optimizer type: {optimizer_type}")
|
| 37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
def cls_loss(self, target, logits):
|
| 39 |
loss_cls = self.criterion(logits, target)
|
| 40 |
return loss_cls
|
|
@@ -50,7 +69,7 @@ class SPC:
|
|
| 50 |
loss_mar = F.mse_loss(mar, mar_target)
|
| 51 |
return loss_mar
|
| 52 |
|
| 53 |
-
def
|
| 54 |
"""Single training step."""
|
| 55 |
self.model.train()
|
| 56 |
logits, mar = self.model(data)
|
|
@@ -62,6 +81,28 @@ class SPC:
|
|
| 62 |
self.optimizer.step()
|
| 63 |
return loss.item(), mar
|
| 64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
def evaluate(self, test_loader, ood_loader, num_classes, threshold=None):
|
| 66 |
"""
|
| 67 |
Evaluate classification accuracy and uncertainty quantification:
|
|
@@ -73,6 +114,7 @@ class SPC:
|
|
| 73 |
y_all, logits_all, mar_all = [], [], []
|
| 74 |
|
| 75 |
with torch.no_grad():
|
|
|
|
| 76 |
for data, target in test_loader:
|
| 77 |
data, target = data.to(device), target.to(device)
|
| 78 |
logits, mar = self.model(data)
|
|
@@ -88,6 +130,7 @@ class SPC:
|
|
| 88 |
expected_uncertainty = 2 * logits * (1 - logits)
|
| 89 |
uncertainty = torch.sum(torch.abs(mar - expected_uncertainty), dim=1)
|
| 90 |
confidences, predictions = torch.max(logits, dim=1)
|
|
|
|
| 91 |
|
| 92 |
threshold = np.quantile(uncertainty.cpu().numpy(), 0.5)
|
| 93 |
acc = (predictions == y_all).float().mean().item()
|
|
@@ -119,10 +162,10 @@ class SPC:
|
|
| 119 |
all_uncertainty = torch.cat([uncertainty, uncertainty_ood])
|
| 120 |
auroc = metrics.roc_auc_score(bin_labels.cpu().numpy(), all_uncertainty.cpu().numpy())
|
| 121 |
|
| 122 |
-
return acc, acc_confident, acc_uncertain, auroc,
|
| 123 |
|
| 124 |
def train(self, train_dataset, test_dataset, ood_dataset, num_classes,
|
| 125 |
-
batch_size=128, num_epochs=40, verbose=True, freq=1):
|
| 126 |
"""
|
| 127 |
Train classifier with SPC-based uncertainty, and evaluate per epoch.
|
| 128 |
"""
|
|
@@ -134,38 +177,84 @@ class SPC:
|
|
| 134 |
acc_curve, acc_conf_curve, acc_unc_curve = [], [], []
|
| 135 |
train_times, test_times = [], []
|
| 136 |
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
|
| 141 |
-
for data, target in train_loader:
|
| 142 |
-
data, target = data.to(device), target.to(device)
|
| 143 |
-
loss, mar = self.run_train_step(data, target, num_classes)
|
| 144 |
-
total_loss += loss
|
| 145 |
-
|
| 146 |
-
if verbose:
|
| 147 |
-
with torch.no_grad():
|
| 148 |
-
logits, mar = self.model(data)
|
| 149 |
-
prob = F.softmax(logits, dim=1)
|
| 150 |
-
mar_target = 2 * prob * (1 - prob)
|
| 151 |
-
uncertainty = torch.sum(torch.abs(mar - mar_target), dim=1)
|
| 152 |
-
total_unc += uncertainty.mean().item()
|
| 153 |
-
|
| 154 |
-
train_times.append((time.time() - start_time) * 1000)
|
| 155 |
-
avg_loss = total_loss / len(train_loader)
|
| 156 |
-
avg_uncertainty = total_unc / len(train_loader)
|
| 157 |
-
|
| 158 |
-
loss_curve.append(avg_loss)
|
| 159 |
-
uncertainty_curve.append(avg_uncertainty)
|
| 160 |
-
|
| 161 |
-
if self.epoch % freq == 0:
|
| 162 |
-
acc, acc_conf, acc_unc, auroc, test_time = self.evaluate(test_loader, ood_loader, num_classes)
|
| 163 |
-
acc_curve.append(acc)
|
| 164 |
-
acc_conf_curve.append(acc_conf)
|
| 165 |
-
acc_unc_curve.append(acc_unc)
|
| 166 |
-
test_times.append(test_time)
|
| 167 |
-
|
| 168 |
-
if acc > self.max_acc:
|
| 169 |
self.max_acc = acc
|
| 170 |
self.max_acc_confident = acc_conf
|
| 171 |
self.max_acc_uncertain = acc_unc
|
|
@@ -193,7 +282,7 @@ class SPC:
|
|
| 193 |
plt.grid(True); plt.legend(); plt.show()
|
| 194 |
|
| 195 |
plt.figure(figsize=(10, 6))
|
| 196 |
-
plt.plot(acc, label='
|
| 197 |
plt.plot(acc_cer, label='Confident Accuracy')
|
| 198 |
plt.plot(acc_unc, label='Uncertain Accuracy')
|
| 199 |
plt.title('Test Accuracy Curves')
|
|
|
|
| 20 |
self.model = model.to(device)
|
| 21 |
self.criterion = nn.CrossEntropyLoss()
|
| 22 |
self.optimizer = self._init_optimizer(optimizer_type, learning_rate)
|
| 23 |
+
self.optimizer_cls = self._init_optimizer_cls(optimizer_type, learning_rate)
|
| 24 |
+
self.optimizer_mar = self._init_optimizer_mar(optimizer_type, learning_rate)
|
| 25 |
+
|
| 26 |
|
| 27 |
self.epoch = 0
|
| 28 |
self.max_acc = -1
|
|
|
|
| 38 |
else:
|
| 39 |
raise ValueError(f"Unsupported optimizer type: {optimizer_type}")
|
| 40 |
|
| 41 |
+
def _init_optimizer_cls(self, optimizer_type, lr):
|
| 42 |
+
if optimizer_type.upper() == 'ADAM':
|
| 43 |
+
return optim.Adam(list(self.model.hidden.parameters()) + list(self.model.hidden_pred.parameters()) + list(self.model.output_pred.parameters()), lr=lr)
|
| 44 |
+
elif optimizer_type.upper() == 'SGD':
|
| 45 |
+
return optim.SGD(list(self.model.hidden.parameters()) + list(self.model.hidden_pred.parameters()) + list(self.model.output_pred.parameters()), lr=0.01, momentum=0.9, weight_decay=5e-4)
|
| 46 |
+
else:
|
| 47 |
+
raise ValueError(f"Unsupported optimizer type: {optimizer_type}")
|
| 48 |
+
|
| 49 |
+
def _init_optimizer_mar(self, optimizer_type, lr):
|
| 50 |
+
if optimizer_type.upper() == 'ADAM':
|
| 51 |
+
return optim.Adam(list(self.model.hidden_mar.parameters()) + list(self.model.output_mar.parameters()), lr=lr)
|
| 52 |
+
elif optimizer_type.upper() == 'SGD':
|
| 53 |
+
return optim.SGD(list(self.model.hidden_mar.parameters()) + list(self.model.output_mar.parameters()), lr=0.01, momentum=0.9, weight_decay=5e-4)
|
| 54 |
+
else:
|
| 55 |
+
raise ValueError(f"Unsupported optimizer type: {optimizer_type}")
|
| 56 |
+
|
| 57 |
def cls_loss(self, target, logits):
|
| 58 |
loss_cls = self.criterion(logits, target)
|
| 59 |
return loss_cls
|
|
|
|
| 69 |
loss_mar = F.mse_loss(mar, mar_target)
|
| 70 |
return loss_mar
|
| 71 |
|
| 72 |
+
def joint_train_step(self, data, target, num_classes):
|
| 73 |
"""Single training step."""
|
| 74 |
self.model.train()
|
| 75 |
logits, mar = self.model(data)
|
|
|
|
| 81 |
self.optimizer.step()
|
| 82 |
return loss.item(), mar
|
| 83 |
|
| 84 |
+
def cls_train_step(self, data, target):
|
| 85 |
+
"""Single training step."""
|
| 86 |
+
self.model.train()
|
| 87 |
+
logits, mar = self.model(data)
|
| 88 |
+
loss_cls = self.cls_loss(target, logits)
|
| 89 |
+
loss = loss_cls
|
| 90 |
+
self.optimizer_cls.zero_grad()
|
| 91 |
+
loss.backward()
|
| 92 |
+
self.optimizer_cls.step()
|
| 93 |
+
return loss.item(), mar
|
| 94 |
+
|
| 95 |
+
def mar_train_step(self, data, target, num_classes):
|
| 96 |
+
"""Single training step."""
|
| 97 |
+
self.model.train()
|
| 98 |
+
logits, mar = self.model(data)
|
| 99 |
+
loss_mar = self.mar_loss(target, num_classes, logits, mar)
|
| 100 |
+
loss = loss_mar
|
| 101 |
+
self.optimizer_mar.zero_grad()
|
| 102 |
+
loss.backward()
|
| 103 |
+
self.optimizer_mar.step()
|
| 104 |
+
return loss.item(), mar
|
| 105 |
+
|
| 106 |
def evaluate(self, test_loader, ood_loader, num_classes, threshold=None):
|
| 107 |
"""
|
| 108 |
Evaluate classification accuracy and uncertainty quantification:
|
|
|
|
| 114 |
y_all, logits_all, mar_all = [], [], []
|
| 115 |
|
| 116 |
with torch.no_grad():
|
| 117 |
+
start_time = time.time()
|
| 118 |
for data, target in test_loader:
|
| 119 |
data, target = data.to(device), target.to(device)
|
| 120 |
logits, mar = self.model(data)
|
|
|
|
| 130 |
expected_uncertainty = 2 * logits * (1 - logits)
|
| 131 |
uncertainty = torch.sum(torch.abs(mar - expected_uncertainty), dim=1)
|
| 132 |
confidences, predictions = torch.max(logits, dim=1)
|
| 133 |
+
test_time=(time.time() - start_time) * 1000
|
| 134 |
|
| 135 |
threshold = np.quantile(uncertainty.cpu().numpy(), 0.5)
|
| 136 |
acc = (predictions == y_all).float().mean().item()
|
|
|
|
| 162 |
all_uncertainty = torch.cat([uncertainty, uncertainty_ood])
|
| 163 |
auroc = metrics.roc_auc_score(bin_labels.cpu().numpy(), all_uncertainty.cpu().numpy())
|
| 164 |
|
| 165 |
+
return acc, acc_confident, acc_uncertain, auroc, test_time / len(test_loader)
|
| 166 |
|
| 167 |
def train(self, train_dataset, test_dataset, ood_dataset, num_classes,
|
| 168 |
+
batch_size=128, num_epochs=40, verbose=True, freq=1, joint_training=0):
|
| 169 |
"""
|
| 170 |
Train classifier with SPC-based uncertainty, and evaluate per epoch.
|
| 171 |
"""
|
|
|
|
| 177 |
acc_curve, acc_conf_curve, acc_unc_curve = [], [], []
|
| 178 |
train_times, test_times = [], []
|
| 179 |
|
| 180 |
+
if joint_training:
|
| 181 |
+
for self.epoch in range(1, num_epochs + 1):
|
| 182 |
+
total_loss, total_unc = 0.0, 0.0
|
| 183 |
+
start_time = time.time()
|
| 184 |
+
|
| 185 |
+
for data, target in train_loader:
|
| 186 |
+
data, target = data.to(device), target.to(device)
|
| 187 |
+
loss, mar = self.joint_train_step(data, target, num_classes)
|
| 188 |
+
total_loss += loss
|
| 189 |
+
|
| 190 |
+
if verbose:
|
| 191 |
+
with torch.no_grad():
|
| 192 |
+
logits, mar = self.model(data)
|
| 193 |
+
prob = F.softmax(logits, dim=1)
|
| 194 |
+
mar_target = 2 * prob * (1 - prob)
|
| 195 |
+
uncertainty = torch.sum(torch.abs(mar - mar_target), dim=1)
|
| 196 |
+
total_unc += uncertainty.mean().item()
|
| 197 |
+
|
| 198 |
+
train_times.append((time.time() - start_time) * 1000)
|
| 199 |
+
avg_loss = total_loss / len(train_loader)
|
| 200 |
+
avg_uncertainty = total_unc / len(train_loader)
|
| 201 |
+
|
| 202 |
+
loss_curve.append(avg_loss)
|
| 203 |
+
uncertainty_curve.append(avg_uncertainty)
|
| 204 |
+
|
| 205 |
+
if self.epoch % freq == 0:
|
| 206 |
+
acc, acc_conf, acc_unc, auroc, test_time = self.evaluate(test_loader, ood_loader, num_classes)
|
| 207 |
+
acc_curve.append(acc)
|
| 208 |
+
acc_conf_curve.append(acc_conf)
|
| 209 |
+
acc_unc_curve.append(acc_unc)
|
| 210 |
+
test_times.append(test_time)
|
| 211 |
+
|
| 212 |
+
if acc > self.max_acc:
|
| 213 |
+
self.max_acc = acc
|
| 214 |
+
self.max_acc_confident = acc_conf
|
| 215 |
+
self.max_acc_uncertain = acc_unc
|
| 216 |
+
self.max_auroc = auroc
|
| 217 |
+
|
| 218 |
+
else:
|
| 219 |
+
for self.epoch in range(1, num_epochs + 1):
|
| 220 |
+
total_loss = 0.0
|
| 221 |
+
|
| 222 |
+
for data, target in train_loader:
|
| 223 |
+
data, target = data.to(device), target.to(device)
|
| 224 |
+
loss, mar = self.cls_train_step(data, target)
|
| 225 |
+
total_loss += loss
|
| 226 |
+
|
| 227 |
+
avg_loss = total_loss / len(train_loader)
|
| 228 |
+
loss_curve.append(avg_loss)
|
| 229 |
+
|
| 230 |
+
for self.epoch in range(1, num_epochs + 1):
|
| 231 |
+
total_unc = 0.0
|
| 232 |
+
start_time = time.time()
|
| 233 |
+
|
| 234 |
+
for data, target in train_loader:
|
| 235 |
+
data, target = data.to(device), target.to(device)
|
| 236 |
+
loss, mar = self.mar_train_step(data, target, num_classes)
|
| 237 |
+
|
| 238 |
+
if verbose:
|
| 239 |
+
with torch.no_grad():
|
| 240 |
+
logits, mar = self.model(data)
|
| 241 |
+
prob = F.softmax(logits, dim=1)
|
| 242 |
+
mar_target = 2 * prob * (1 - prob)
|
| 243 |
+
uncertainty = torch.sum(torch.abs(mar - mar_target), dim=1)
|
| 244 |
+
total_unc += uncertainty.mean().item()
|
| 245 |
+
|
| 246 |
+
train_times.append((time.time() - start_time) * 1000)
|
| 247 |
+
avg_uncertainty = total_unc / len(train_loader)
|
| 248 |
+
|
| 249 |
+
uncertainty_curve.append(avg_uncertainty)
|
| 250 |
+
|
| 251 |
+
if self.epoch % freq == 0:
|
| 252 |
+
acc, acc_conf, acc_unc, auroc, test_time = self.evaluate(test_loader, ood_loader, num_classes)
|
| 253 |
+
acc_curve.append(acc)
|
| 254 |
+
acc_conf_curve.append(acc_conf)
|
| 255 |
+
acc_unc_curve.append(acc_unc)
|
| 256 |
+
test_times.append(test_time)
|
| 257 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 258 |
self.max_acc = acc
|
| 259 |
self.max_acc_confident = acc_conf
|
| 260 |
self.max_acc_uncertain = acc_unc
|
|
|
|
| 282 |
plt.grid(True); plt.legend(); plt.show()
|
| 283 |
|
| 284 |
plt.figure(figsize=(10, 6))
|
| 285 |
+
plt.plot(acc, label='Overall Accuracy')
|
| 286 |
plt.plot(acc_cer, label='Confident Accuracy')
|
| 287 |
plt.plot(acc_unc, label='Uncertain Accuracy')
|
| 288 |
plt.title('Test Accuracy Curves')
|