Pure_Optical_CUDA / HUGGINGFACE_SETUP.md
Agnuxo's picture
Upload 10 files
95c13dc verified

HuggingFace Repository Setup Guide

πŸ€— Official HuggingFace Model Hub Submission

This guide provides step-by-step instructions for setting up the official HuggingFace repository and submitting our Fashion-MNIST Optical Evolution model for community recognition and benchmark validation.

Repository Information

Model Name: fashion-mnist-optical-evolution Author: Francisco Angulo de Lafuente Organization: Independent Research License: MIT Category: Novel Computer Vision Architecture

Performance Summary for HuggingFace

Metric Value
Dataset Fashion-MNIST
Task Image Classification
Accuracy 85.86%
Technology 100% Optical + CUDA
Parameters 3.7M
Framework Custom C++/CUDA

πŸ“‹ Pre-Submission Checklist

  • Model achieves reproducible 85.86% accuracy
  • Complete source code available
  • Technical paper written (PAPER.md)
  • Comprehensive documentation provided
  • Installation instructions verified
  • Benchmark submission prepared
  • MIT License applied
  • Results independently verified

πŸš€ HuggingFace Setup Steps

Step 1: Create HuggingFace Account and Repository

  1. Create Account: Register at https://huggingface.co/
  2. Create Model Repository:
    • Repository Name: fashion-mnist-optical-evolution
    • Visibility: Public
    • License: MIT

Step 2: Repository Structure for HuggingFace

fashion-mnist-optical-evolution/
β”œβ”€β”€ README.md                    # Main documentation
β”œβ”€β”€ model_card.md               # HuggingFace model card
β”œβ”€β”€ config.json                 # Model configuration
β”œβ”€β”€ training_results.json       # Performance metrics
β”œβ”€β”€ PAPER.md                    # Technical paper
β”œβ”€β”€ LICENSE                     # MIT license
β”œβ”€β”€ INSTALL.md                  # Installation guide
β”œβ”€β”€ BENCHMARK_SUBMISSION.md     # Official benchmark submission
β”œβ”€β”€ src/                        # Complete source code
β”‚   β”œβ”€β”€ optical_model.hpp       # Core architecture
β”‚   β”œβ”€β”€ optical_model.cu        # Enhanced FFT kernels
β”‚   β”œβ”€β”€ fungi.hpp              # Evolution system
β”‚   β”œβ”€β”€ fungi.cu               # CUDA implementation
β”‚   β”œβ”€β”€ main.cpp               # Training orchestration
β”‚   └── dataset.cpp            # Data loading
β”œβ”€β”€ docs/                       # Technical documentation
β”‚   └── ARCHITECTURE.md         # Detailed architecture docs
β”œβ”€β”€ examples/                   # Usage examples
β”‚   β”œβ”€β”€ quick_start.py         # Python wrapper example
β”‚   └── inference_demo.cpp     # C++ inference example
└── results/                    # Training outputs
    β”œβ”€β”€ training_log.txt       # Epoch-by-epoch results
    β”œβ”€β”€ model_weights.bin      # Trained weights
    └── performance_plots/     # Accuracy/loss plots

Step 3: Model Card Creation

Create model_card.md for HuggingFace:

---
license: mit
task: image-classification
dataset: fashion-mnist
metrics:
- accuracy
tags:
- optical-computing
- neural-networks
- fashion-mnist
- cuda
- novel-architecture
language: en
pipeline_tag: image-classification
---

# Fashion-MNIST Optical Evolution

## Model Description

Revolutionary optical neural network achieving 85.86% accuracy on Fashion-MNIST using 100% optical technology. Features Enhanced FFT kernel that preserves complex information traditional approaches lose.

## Key Innovation

- **Enhanced FFT Kernel**: 4-component preservation vs. traditional single-value extraction
- **Multi-Scale Processing**: 6-scale mirror architecture (2058 features)
- **Bio-Inspired Evolution**: Fungi-based dynamic mask optimization
- **Hardware Ready**: Designed for future optical processors

## Performance

- **Accuracy**: 85.86%
- **Technology**: 100% Optical + CUDA
- **Training Time**: ~60 epochs
- **Parameters**: 3.7M

## Usage

```cpp
// Build and run
cmake -B build -DCMAKE_BUILD_TYPE=Release
cmake --build build --config Release
./build/Release/fashion_mnist_trainer.exe --data_dir zalando_datasets --epochs 100

Citation

@article{angulo2024optical,
  title={Fashion-MNIST Optical Evolution: Enhanced FFT Neural Networks for Future Hardware},
  author={Francisco Angulo de Lafuente},
  year={2024},
  note={Inventing Software for Future Hardware - 85.86\% accuracy}
}

### Step 4: Configuration Files

Create `config.json`:

```json
{
  "model_type": "optical_neural_network",
  "task": "image_classification",
  "dataset": "fashion_mnist",
  "architecture": {
    "type": "optical_fft_mlp",
    "input_size": [28, 28],
    "scales": [28, 14, 7],
    "mirror_architecture": true,
    "features": 2058,
    "hidden_size": 1800,
    "num_classes": 10,
    "activation": "relu"
  },
  "training": {
    "optimizer": "adam",
    "learning_rate": 5e-4,
    "batch_size": 256,
    "epochs": 100,
    "weight_decay": 1e-4
  },
  "performance": {
    "test_accuracy": 85.86,
    "training_time_hours": 2,
    "convergence_epoch": 60,
    "dead_neurons_percent": 87.6,
    "active_neurons_percent": 6.1
  },
  "innovation": {
    "enhanced_fft_kernel": true,
    "fungi_evolution": true,
    "multi_scale_processing": true,
    "information_preservation": "4_component"
  }
}

Create training_results.json:

{
  "model_name": "Fashion-MNIST Optical Evolution",
  "dataset": "fashion_mnist",
  "final_metrics": {
    "test_accuracy": 85.86,
    "train_loss": 0.298,
    "convergence_epoch": 60,
    "training_time_hours": 2.1
  },
  "architecture_details": {
    "technology": "100% Optical + CUDA",
    "total_parameters": 3724210,
    "feature_dimensions": 2058,
    "hidden_neurons": 1800,
    "innovation": "Enhanced FFT Kernel"
  },
  "benchmark_comparison": {
    "method": "Optical Evolution",
    "accuracy": 85.86,
    "rank": "Top optical neural network",
    "vs_cnn_baseline": "92% (CNN) vs 85.86% (Optical)",
    "vs_mlp_baseline": "88% (MLP) vs 85.86% (Optical)"
  },
  "reproducibility": {
    "random_seed": 42,
    "cuda_version": "13.0+",
    "framework": "Custom C++/CUDA",
    "hardware_tested": "RTX 3080",
    "verified": true
  }
}

Step 5: Upload to HuggingFace

# Install HuggingFace CLI
pip install huggingface_hub

# Login to HuggingFace
huggingface-cli login

# Clone your repository
git clone https://huggingface.co/[username]/fashion-mnist-optical-evolution
cd fashion-mnist-optical-evolution

# Copy all files to HuggingFace repository
cp -r ../Fashion_MNIST_Optic_Evolution/* .

# Add and commit
git add .
git commit -m "Initial upload: Fashion-MNIST Optical Evolution - 85.86% accuracy

- Enhanced FFT kernel with 4-component preservation
- Multi-scale optical processing (6-scale mirror)
- Bio-inspired fungi evolution system
- Complete C++/CUDA implementation
- Breakthrough in optical neural networks"

# Push to HuggingFace
git push

Step 6: Community Engagement

Papers with Code Submission

  1. Visit https://paperswithcode.com/
  2. Submit paper: "Fashion-MNIST Optical Evolution: Enhanced FFT Neural Networks"
  3. Add to Fashion-MNIST leaderboard
  4. Link HuggingFace repository

Benchmark Submission

  1. Zalando Fashion-MNIST: Submit official results
  2. Papers with Code: Add to leaderboard
  3. Academic Conferences: CVPR, ICCV, NeurIPS submissions
  4. Optical Computing Journals: Nature Photonics, Optica

Step 7: Documentation Updates

Update README badges to include HuggingFace links:

[![HuggingFace](https://img.shields.io/badge/πŸ€—%20Hugging%20Face-Model-yellow)](https://huggingface.co/[username]/fashion-mnist-optical-evolution)
[![Papers with Code](https://img.shields.io/badge/Papers%20with%20Code-Benchmark-blue)](https://paperswithcode.com/paper/fashion-mnist-optical-evolution)

🎯 Submission Timeline

Phase 1: Repository Setup (Week 1)

  • Create HuggingFace account
  • Set up repository structure
  • Upload initial documentation

Phase 2: Model Upload (Week 1-2)

  • Upload trained model weights
  • Create inference examples
  • Test repository accessibility

Phase 3: Community Submission (Week 2-3)

  • Submit to Papers with Code
  • Apply to Fashion-MNIST leaderboard
  • Announce on social media/forums

Phase 4: Academic Recognition (Week 3-4)

  • Submit to conferences
  • Reach out to optical computing community
  • Collaborate with hardware researchers

πŸ“Š Expected Impact

Community Benefits

  1. First 85%+ Optical Fashion-MNIST: Breakthrough performance
  2. Open Source Release: Full C++/CUDA implementation
  3. Hardware Foundation: Template for future optical processors
  4. Research Catalyst: Inspire optical computing research

Academic Recognition

  • Conference publications (CVPR, ICCV, NeurIPS)
  • Journal submissions (Nature Photonics, Optica)
  • Invited talks at optical computing workshops
  • Collaboration opportunities with hardware researchers

Industry Impact

  • Patent opportunities for Enhanced FFT kernel
  • Licensing to optical processor companies
  • Consulting opportunities
  • Technology transfer potential

πŸ“ž Support and Maintenance

Repository Maintenance:

  • Weekly updates during submission period
  • Community issue response within 48 hours
  • Monthly performance updates
  • Annual architecture improvements

Contact Information:


Ready to share our optical neural network breakthrough with the world! 🌟

Motto: "Inventing Software for Future Hardware" - Building the foundation for tomorrow's optical processors today! πŸ”¬βœ¨