SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2

This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: sentence-transformers/all-MiniLM-L6-v2
  • Maximum Sequence Length: 256 tokens
  • Output Dimensionality: 384 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False, 'architecture': 'BertModel'})
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Albertdebeauvais/all-MiniLM-L6-v2_cotes")
# Run inference
sentences = [
    'PRAGUE [Czech Republic] Národní knihovna Cod. hist. 17036',
    'Národní knihovna, Cod. hist. 17036 (PRAGUE)',
    'FLORENCE [Italy] Biblioteca Medicea Laurenziana, Département des manuscrits, Cod. 7698',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.9921, 0.2995],
#         [0.9921, 1.0000, 0.3039],
#         [0.2995, 0.3039, 1.0000]])

Evaluation

Metrics

Binary Classification

Metric eval test
cosine_accuracy 0.9936 0.9919
cosine_accuracy_threshold 0.858 0.8689
cosine_f1 0.9934 0.9919
cosine_f1_threshold 0.8505 0.8689
cosine_precision 0.9928 0.9946
cosine_recall 0.9941 0.9892
cosine_ap 0.9994 0.9994
cosine_mcc 0.9872 0.9839

Training Details

Training Dataset

Unnamed Dataset

  • Size: 183,668 training samples
  • Columns: text1, text2, and label
  • Approximate statistics based on the first 1000 samples:
    text1 text2 label
    type string string int
    details
    • min: 6 tokens
    • mean: 16.43 tokens
    • max: 34 tokens
    • min: 7 tokens
    • mean: 16.67 tokens
    • max: 39 tokens
    • 0: ~51.20%
    • 1: ~48.80%
  • Samples:
    text1 text2 label
    Vatican. Biblioteca apostolica vaticana, Vat.lat.1664 Vatican. Biblioteca apostolica vaticana, Vat.lat.1664 1
    Royal Library of Belgium (Brussels, Belgium), Voss. lat. 69542-73 STOCKHOLM [Sweden] Kungliga biblioteket Cod. 69542-73 0
    KB, ms. Ott. 34088 Staatsbibliothek zu Berlin, ms. nouv. acq. 34088 0
  • Loss: OnlineContrastiveLoss

Evaluation Dataset

Unnamed Dataset

  • Size: 4,833 evaluation samples
  • Columns: text1, text2, and label
  • Approximate statistics based on the first 1000 samples:
    text1 text2 label
    type string string int
    details
    • min: 7 tokens
    • mean: 16.21 tokens
    • max: 39 tokens
    • min: 6 tokens
    • mean: 16.65 tokens
    • max: 41 tokens
    • 0: ~52.00%
    • 1: ~48.00%
  • Samples:
    text1 text2 label
    NYPL, ms. EGERTON 44378 New York Public Library, Egerton 44378 1
    BRUSSELS [Belgium] KBR lat. 39761 BRUSSELS [Belgium] Bibliothèque royale de Belgique lat. 39761 1
    Stockholm, Royal Library Sweden, lat. 21045-64 Royal Library of Sweden, lat. 21045-64 1
  • Loss: OnlineContrastiveLoss

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 160
  • per_device_eval_batch_size: 160
  • learning_rate: 3e-05
  • warmup_ratio: 0.03

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 160
  • per_device_eval_batch_size: 160
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 3e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 3
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.03
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • parallelism_config: None
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • hub_revision: None
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • liger_kernel_config: None
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Click to expand
Epoch Step Training Loss Validation Loss eval_cosine_ap test_cosine_ap
-1 -1 - - 0.7380 -
0.0052 6 11.0534 - - -
0.0105 12 11.3792 - - -
0.0157 18 8.799 - - -
0.0209 24 7.7743 - - -
0.0261 30 5.8982 - - -
0.0314 36 4.9405 - - -
0.0366 42 3.2519 - - -
0.0418 48 2.195 - - -
0.0470 54 2.9317 - - -
0.0523 60 1.6287 - - -
0.0575 66 1.39 - - -
0.0627 72 1.6894 - - -
0.0679 78 1.7984 - - -
0.0732 84 1.4432 - - -
0.0784 90 1.4062 - - -
0.0836 96 1.5969 - - -
0.0889 102 1.3597 - - -
0.0941 108 1.1465 - - -
0.0993 114 1.1614 - - -
0.1045 120 1.116 - - -
0.1098 126 1.1741 - - -
0.1150 132 0.9491 - - -
0.1202 138 0.7978 - - -
0.1254 144 0.9691 - - -
0.1307 150 0.8838 - - -
0.1359 156 0.9894 - - -
0.1411 162 1.0388 - - -
0.1463 168 0.9774 - - -
0.1516 174 0.8315 - - -
0.1568 180 0.747 - - -
0.1620 186 0.7621 - - -
0.1672 192 0.8285 - - -
0.1725 198 0.8893 - - -
0.1777 204 0.8845 - - -
0.1829 210 0.7866 - - -
0.1882 216 0.8586 - - -
0.1934 222 0.8521 - - -
0.1986 228 0.9021 - - -
0.2038 234 0.5791 - - -
0.2091 240 0.5312 - - -
0.2143 246 0.6911 - - -
0.2195 252 0.543 - - -
0.2247 258 0.7933 - - -
0.2300 264 0.6489 - - -
0.2352 270 0.6369 - - -
0.2404 276 0.6113 - - -
0.2456 282 0.647 - - -
0.2509 288 0.6253 - - -
0.2561 294 0.7232 - - -
0.2613 300 0.5919 - - -
0.2666 306 0.5326 - - -
0.2718 312 0.7215 - - -
0.2770 318 0.7516 - - -
0.2822 324 0.5459 - - -
0.2875 330 0.3956 - - -
0.2927 336 0.6712 - - -
0.2979 342 1.1014 - - -
0.3031 348 0.7373 - - -
0.3084 354 0.6435 - - -
0.3136 360 0.726 - - -
0.3188 366 0.6514 - - -
0.3240 372 0.9203 - - -
0.3293 378 0.4015 - - -
0.3345 384 0.4945 - - -
0.3397 390 0.5672 - - -
0.3449 396 0.5229 - - -
0.3502 402 0.6377 - - -
0.3554 408 0.7667 - - -
0.3606 414 0.8402 - - -
0.3659 420 0.5398 - - -
0.3711 426 1.017 - - -
0.3763 432 0.6365 - - -
0.3815 438 0.2821 - - -
0.3868 444 0.7511 - - -
0.3920 450 0.5463 - - -
0.3972 456 0.4772 - - -
0.4024 462 0.6965 - - -
0.4077 468 0.646 - - -
0.4129 474 0.4739 - - -
0.4181 480 0.3673 - - -
0.4233 486 0.5785 - - -
0.4286 492 0.227 - - -
0.4338 498 0.7576 - - -
0.4390 504 0.8942 - - -
0.4443 510 0.4486 - - -
0.4495 516 0.3542 - - -
0.4547 522 0.4259 - - -
0.4599 528 0.5376 - - -
0.4652 534 0.7009 - - -
0.4704 540 0.5248 - - -
0.4756 546 0.577 - - -
0.4808 552 0.3948 - - -
0.4861 558 0.4447 - - -
0.4913 564 0.7539 - - -
0.4965 570 0.2763 - - -
0.5017 576 0.3015 - - -
0.5070 582 0.4449 - - -
0.5122 588 0.6351 - - -
0.5174 594 0.5846 - - -
0.5226 600 0.576 - - -
0.5279 606 0.3576 - - -
0.5331 612 0.2414 - - -
0.5383 618 0.5904 - - -
0.5436 624 0.5306 - - -
0.5488 630 0.474 - - -
0.5540 636 0.6083 - - -
0.5592 642 0.6796 - - -
0.5645 648 0.5498 - - -
0.5697 654 0.6603 - - -
0.5749 660 0.3717 - - -
0.5801 666 0.8338 - - -
0.5854 672 0.4483 - - -
0.5906 678 0.3904 - - -
0.5958 684 0.3456 - - -
0.6010 690 0.3724 - - -
0.6063 696 0.8648 - - -
0.6115 702 0.6776 - - -
0.6167 708 0.3602 - - -
0.6220 714 0.405 - - -
0.6272 720 0.5042 - - -
0.6324 726 0.458 - - -
0.6376 732 0.3791 - - -
0.6429 738 0.4746 - - -
0.6481 744 0.6014 - - -
0.6533 750 0.4847 - - -
0.6585 756 0.3132 - - -
0.6638 762 0.4689 - - -
0.6690 768 0.3886 - - -
0.6742 774 0.6002 - - -
0.6794 780 0.2 - - -
0.6847 786 0.4584 - - -
0.6899 792 0.5236 - - -
0.6951 798 0.2428 - - -
0.7003 804 0.7477 - - -
0.7056 810 0.5688 - - -
0.7108 816 0.2678 - - -
0.7160 822 0.2852 - - -
0.7213 828 0.3194 - - -
0.7265 834 0.6157 - - -
0.7317 840 0.2916 - - -
0.7369 846 0.5354 - - -
0.7422 852 0.5441 - - -
0.7474 858 0.3386 - - -
0.7526 864 0.2868 - - -
0.7578 870 0.8884 - - -
0.7631 876 0.1933 - - -
0.7683 882 0.5702 - - -
0.7735 888 0.4724 - - -
0.7787 894 0.4239 - - -
0.7840 900 0.5211 - - -
0.7892 906 0.5454 - - -
0.7944 912 0.3982 - - -
0.7997 918 0.6393 - - -
0.8049 924 0.2553 - - -
0.8101 930 0.2186 - - -
0.8153 936 0.3652 - - -
0.8206 942 0.4922 - - -
0.8258 948 0.4043 - - -
0.8310 954 0.5297 - - -
0.8362 960 0.4649 - - -
0.8415 966 0.4515 - - -
0.8467 972 0.3466 - - -
0.8519 978 0.4999 - - -
0.8571 984 0.4356 - - -
0.8624 990 0.4066 - - -
0.8676 996 0.1665 - - -
0.8728 1002 0.4078 - - -
0.8780 1008 0.2811 - - -
0.8833 1014 0.351 - - -
0.8885 1020 0.2498 - - -
0.8937 1026 0.3684 - - -
0.8990 1032 0.3429 - - -
0.9042 1038 0.3797 - - -
0.9094 1044 0.3756 - - -
0.9146 1050 0.1628 - - -
0.9199 1056 0.6396 - - -
0.9251 1062 0.4486 - - -
0.9303 1068 0.4347 - - -
0.9355 1074 0.3849 - - -
0.9408 1080 0.6004 - - -
0.9460 1086 0.5233 - - -
0.9512 1092 0.3776 - - -
0.9564 1098 0.5516 - - -
0.9617 1104 0.3355 - - -
0.9669 1110 0.3031 - - -
0.9721 1116 0.409 - - -
0.9774 1122 0.5007 - - -
0.9826 1128 0.4215 - - -
0.9878 1134 0.4394 - - -
0.9930 1140 0.273 - - -
0.9983 1146 0.365 - - -
1.0 1148 - 0.2877 0.9987 -
1.0035 1152 0.3812 - - -
1.0087 1158 0.2444 - - -
1.0139 1164 0.3097 - - -
1.0192 1170 0.4659 - - -
1.0244 1176 0.1669 - - -
1.0296 1182 0.1825 - - -
1.0348 1188 0.4532 - - -
1.0401 1194 0.5368 - - -
1.0453 1200 0.2084 - - -
1.0505 1206 0.1953 - - -
1.0557 1212 0.2187 - - -
1.0610 1218 0.3887 - - -
1.0662 1224 0.366 - - -
1.0714 1230 0.1054 - - -
1.0767 1236 0.5161 - - -
1.0819 1242 0.2891 - - -
1.0871 1248 0.2111 - - -
1.0923 1254 0.2921 - - -
1.0976 1260 0.2873 - - -
1.1028 1266 0.3253 - - -
1.1080 1272 0.3026 - - -
1.1132 1278 0.0585 - - -
1.1185 1284 0.2984 - - -
1.1237 1290 0.1654 - - -
1.1289 1296 0.6225 - - -
1.1341 1302 0.3749 - - -
1.1394 1308 0.3727 - - -
1.1446 1314 0.2266 - - -
1.1498 1320 0.2619 - - -
1.1551 1326 0.2534 - - -
1.1603 1332 0.3271 - - -
1.1655 1338 0.1328 - - -
1.1707 1344 0.4029 - - -
1.1760 1350 0.0869 - - -
1.1812 1356 0.6434 - - -
1.1864 1362 0.2033 - - -
1.1916 1368 0.2266 - - -
1.1969 1374 0.2547 - - -
1.2021 1380 0.2199 - - -
1.2073 1386 0.3716 - - -
1.2125 1392 0.4646 - - -
1.2178 1398 0.2163 - - -
1.2230 1404 0.1998 - - -
1.2282 1410 0.41 - - -
1.2334 1416 0.2859 - - -
1.2387 1422 0.2039 - - -
1.2439 1428 0.4095 - - -
1.2491 1434 0.0924 - - -
1.2544 1440 0.3192 - - -
1.2596 1446 0.4833 - - -
1.2648 1452 0.4927 - - -
1.2700 1458 0.2107 - - -
1.2753 1464 0.1869 - - -
1.2805 1470 0.188 - - -
1.2857 1476 0.0841 - - -
1.2909 1482 0.4332 - - -
1.2962 1488 0.3164 - - -
1.3014 1494 0.1526 - - -
1.3066 1500 0.0848 - - -
1.3118 1506 0.1896 - - -
1.3171 1512 0.2525 - - -
1.3223 1518 0.1776 - - -
1.3275 1524 0.2098 - - -
1.3328 1530 0.2494 - - -
1.3380 1536 0.1643 - - -
1.3432 1542 0.2588 - - -
1.3484 1548 0.2429 - - -
1.3537 1554 0.2195 - - -
1.3589 1560 0.138 - - -
1.3641 1566 0.285 - - -
1.3693 1572 0.7177 - - -
1.3746 1578 0.5872 - - -
1.3798 1584 0.1981 - - -
1.3850 1590 0.34 - - -
1.3902 1596 0.3694 - - -
1.3955 1602 0.0795 - - -
1.4007 1608 0.4017 - - -
1.4059 1614 0.364 - - -
1.4111 1620 0.2462 - - -
1.4164 1626 0.0681 - - -
1.4216 1632 0.2719 - - -
1.4268 1638 0.1616 - - -
1.4321 1644 0.3847 - - -
1.4373 1650 0.3032 - - -
1.4425 1656 0.2087 - - -
1.4477 1662 0.2143 - - -
1.4530 1668 0.2841 - - -
1.4582 1674 0.0644 - - -
1.4634 1680 0.1469 - - -
1.4686 1686 0.1478 - - -
1.4739 1692 0.1094 - - -
1.4791 1698 0.1843 - - -
1.4843 1704 0.4574 - - -
1.4895 1710 0.4318 - - -
1.4948 1716 0.1449 - - -
1.5 1722 0.2713 - - -
1.5052 1728 0.3274 - - -
1.5105 1734 0.2755 - - -
1.5157 1740 0.3226 - - -
1.5209 1746 0.2007 - - -
1.5261 1752 0.4237 - - -
1.5314 1758 0.2821 - - -
1.5366 1764 0.4661 - - -
1.5418 1770 0.2417 - - -
1.5470 1776 0.1035 - - -
1.5523 1782 0.238 - - -
1.5575 1788 0.1845 - - -
1.5627 1794 0.1721 - - -
1.5679 1800 0.04 - - -
1.5732 1806 0.0548 - - -
1.5784 1812 0.427 - - -
1.5836 1818 0.0614 - - -
1.5889 1824 0.1521 - - -
1.5941 1830 0.3391 - - -
1.5993 1836 0.2717 - - -
1.6045 1842 0.2131 - - -
1.6098 1848 0.3416 - - -
1.6150 1854 0.218 - - -
1.6202 1860 0.148 - - -
1.6254 1866 0.3309 - - -
1.6307 1872 0.0677 - - -
1.6359 1878 0.1093 - - -
1.6411 1884 0.4192 - - -
1.6463 1890 0.165 - - -
1.6516 1896 0.1975 - - -
1.6568 1902 0.2514 - - -
1.6620 1908 0.3038 - - -
1.6672 1914 0.4222 - - -
1.6725 1920 0.2399 - - -
1.6777 1926 0.1679 - - -
1.6829 1932 0.3724 - - -
1.6882 1938 0.1685 - - -
1.6934 1944 0.4037 - - -
1.6986 1950 0.3649 - - -
1.7038 1956 0.3041 - - -
1.7091 1962 0.29 - - -
1.7143 1968 0.2204 - - -
1.7195 1974 0.3762 - - -
1.7247 1980 0.3857 - - -
1.7300 1986 0.2591 - - -
1.7352 1992 0.1436 - - -
1.7404 1998 0.3725 - - -
1.7456 2004 0.272 - - -
1.7509 2010 0.2497 - - -
1.7561 2016 0.211 - - -
1.7613 2022 0.339 - - -
1.7666 2028 0.3218 - - -
1.7718 2034 0.28 - - -
1.7770 2040 0.2353 - - -
1.7822 2046 0.1672 - - -
1.7875 2052 0.1992 - - -
1.7927 2058 0.1121 - - -
1.7979 2064 0.2625 - - -
1.8031 2070 0.3866 - - -
1.8084 2076 0.35 - - -
1.8136 2082 0.1784 - - -
1.8188 2088 0.2353 - - -
1.8240 2094 0.2156 - - -
1.8293 2100 0.1825 - - -
1.8345 2106 0.2695 - - -
1.8397 2112 0.2211 - - -
1.8449 2118 0.3734 - - -
1.8502 2124 0.4629 - - -
1.8554 2130 0.1376 - - -
1.8606 2136 0.2899 - - -
1.8659 2142 0.2706 - - -
1.8711 2148 0.3565 - - -
1.8763 2154 0.1231 - - -
1.8815 2160 0.3058 - - -
1.8868 2166 0.1174 - - -
1.8920 2172 0.2687 - - -
1.8972 2178 0.1954 - - -
1.9024 2184 0.1452 - - -
1.9077 2190 0.2603 - - -
1.9129 2196 0.2607 - - -
1.9181 2202 0.2368 - - -
1.9233 2208 0.3415 - - -
1.9286 2214 0.1312 - - -
1.9338 2220 0.1627 - - -
1.9390 2226 0.1815 - - -
1.9443 2232 0.089 - - -
1.9495 2238 0.1868 - - -
1.9547 2244 0.1073 - - -
1.9599 2250 0.341 - - -
1.9652 2256 0.2377 - - -
1.9704 2262 0.2618 - - -
1.9756 2268 0.24 - - -
1.9808 2274 0.2164 - - -
1.9861 2280 0.1535 - - -
1.9913 2286 0.3638 - - -
1.9965 2292 0.2644 - - -
2.0 2296 - 0.1788 0.9993 -
2.0017 2298 0.1214 - - -
2.0070 2304 0.1739 - - -
2.0122 2310 0.143 - - -
2.0174 2316 0.2787 - - -
2.0226 2322 0.0949 - - -
2.0279 2328 0.1275 - - -
2.0331 2334 0.1298 - - -
2.0383 2340 0.1309 - - -
2.0436 2346 0.2705 - - -
2.0488 2352 0.1701 - - -
2.0540 2358 0.0701 - - -
2.0592 2364 0.1964 - - -
2.0645 2370 0.3012 - - -
2.0697 2376 0.0734 - - -
2.0749 2382 0.1742 - - -
2.0801 2388 0.0627 - - -
2.0854 2394 0.1086 - - -
2.0906 2400 0.0505 - - -
2.0958 2406 0.1698 - - -
2.1010 2412 0.2281 - - -
2.1063 2418 0.2046 - - -
2.1115 2424 0.2343 - - -
2.1167 2430 0.1266 - - -
2.1220 2436 0.0939 - - -
2.1272 2442 0.2014 - - -
2.1324 2448 0.0345 - - -
2.1376 2454 0.164 - - -
2.1429 2460 0.1983 - - -
2.1481 2466 0.3191 - - -
2.1533 2472 0.2991 - - -
2.1585 2478 0.089 - - -
2.1638 2484 0.136 - - -
2.1690 2490 0.0 - - -
2.1742 2496 0.1122 - - -
2.1794 2502 0.1697 - - -
2.1847 2508 0.0866 - - -
2.1899 2514 0.1509 - - -
2.1951 2520 0.3506 - - -
2.2003 2526 0.0 - - -
2.2056 2532 0.1797 - - -
2.2108 2538 0.0762 - - -
2.2160 2544 0.1793 - - -
2.2213 2550 0.0303 - - -
2.2265 2556 0.3666 - - -
2.2317 2562 0.0903 - - -
2.2369 2568 0.2618 - - -
2.2422 2574 0.0372 - - -
2.2474 2580 0.1638 - - -
2.2526 2586 0.1492 - - -
2.2578 2592 0.128 - - -
2.2631 2598 0.2282 - - -
2.2683 2604 0.14 - - -
2.2735 2610 0.2016 - - -
2.2787 2616 0.2329 - - -
2.2840 2622 0.0231 - - -
2.2892 2628 0.1221 - - -
2.2944 2634 0.2853 - - -
2.2997 2640 0.1054 - - -
2.3049 2646 0.1585 - - -
2.3101 2652 0.1773 - - -
2.3153 2658 0.0978 - - -
2.3206 2664 0.1096 - - -
2.3258 2670 0.0669 - - -
2.3310 2676 0.0727 - - -
2.3362 2682 0.329 - - -
2.3415 2688 0.2567 - - -
2.3467 2694 0.0864 - - -
2.3519 2700 0.1642 - - -
2.3571 2706 0.1138 - - -
2.3624 2712 0.3575 - - -
2.3676 2718 0.1272 - - -
2.3728 2724 0.0902 - - -
2.3780 2730 0.211 - - -
2.3833 2736 0.1225 - - -
2.3885 2742 0.1512 - - -
2.3937 2748 0.2895 - - -
2.3990 2754 0.1159 - - -
2.4042 2760 0.0993 - - -
2.4094 2766 0.109 - - -
2.4146 2772 0.1609 - - -
2.4199 2778 0.2196 - - -
2.4251 2784 0.0618 - - -
2.4303 2790 0.1255 - - -
2.4355 2796 0.2316 - - -
2.4408 2802 0.1175 - - -
2.4460 2808 0.2023 - - -
2.4512 2814 0.2239 - - -
2.4564 2820 0.2202 - - -
2.4617 2826 0.2029 - - -
2.4669 2832 0.2325 - - -
2.4721 2838 0.1697 - - -
2.4774 2844 0.3761 - - -
2.4826 2850 0.1319 - - -
2.4878 2856 0.0234 - - -
2.4930 2862 0.3063 - - -
2.4983 2868 0.0783 - - -
2.5035 2874 0.1579 - - -
2.5087 2880 0.3283 - - -
2.5139 2886 0.217 - - -
2.5192 2892 0.0555 - - -
2.5244 2898 0.1873 - - -
2.5296 2904 0.1958 - - -
2.5348 2910 0.2545 - - -
2.5401 2916 0.1208 - - -
2.5453 2922 0.212 - - -
2.5505 2928 0.2414 - - -
2.5557 2934 0.1004 - - -
2.5610 2940 0.0302 - - -
2.5662 2946 0.1554 - - -
2.5714 2952 0.1421 - - -
2.5767 2958 0.1493 - - -
2.5819 2964 0.2166 - - -
2.5871 2970 0.4662 - - -
2.5923 2976 0.0 - - -
2.5976 2982 0.3535 - - -
2.6028 2988 0.1567 - - -
2.6080 2994 0.3008 - - -
2.6132 3000 0.1711 - - -
2.6185 3006 0.1507 - - -
2.6237 3012 0.2314 - - -
2.6289 3018 0.1814 - - -
2.6341 3024 0.1327 - - -
2.6394 3030 0.1694 - - -
2.6446 3036 0.1623 - - -
2.6498 3042 0.1089 - - -
2.6551 3048 0.1668 - - -
2.6603 3054 0.0577 - - -
2.6655 3060 0.1246 - - -
2.6707 3066 0.0771 - - -
2.6760 3072 0.2558 - - -
2.6812 3078 0.1282 - - -
2.6864 3084 0.2405 - - -
2.6916 3090 0.2521 - - -
2.6969 3096 0.2159 - - -
2.7021 3102 0.3155 - - -
2.7073 3108 0.0728 - - -
2.7125 3114 0.1084 - - -
2.7178 3120 0.108 - - -
2.7230 3126 0.2431 - - -
2.7282 3132 0.075 - - -
2.7334 3138 0.2153 - - -
2.7387 3144 0.2256 - - -
2.7439 3150 0.153 - - -
2.7491 3156 0.1715 - - -
2.7544 3162 0.2082 - - -
2.7596 3168 0.1098 - - -
2.7648 3174 0.1658 - - -
2.7700 3180 0.0779 - - -
2.7753 3186 0.2188 - - -
2.7805 3192 0.1308 - - -
2.7857 3198 0.1662 - - -
2.7909 3204 0.1753 - - -
2.7962 3210 0.1767 - - -
2.8014 3216 0.1818 - - -
2.8066 3222 0.207 - - -
2.8118 3228 0.3599 - - -
2.8171 3234 0.1318 - - -
2.8223 3240 0.1923 - - -
2.8275 3246 0.1841 - - -
2.8328 3252 0.1179 - - -
2.8380 3258 0.2105 - - -
2.8432 3264 0.1522 - - -
2.8484 3270 0.1161 - - -
2.8537 3276 0.134 - - -
2.8589 3282 0.0355 - - -
2.8641 3288 0.1747 - - -
2.8693 3294 0.101 - - -
2.8746 3300 0.1603 - - -
2.8798 3306 0.1461 - - -
2.8850 3312 0.0955 - - -
2.8902 3318 0.1072 - - -
2.8955 3324 0.0749 - - -
2.9007 3330 0.3698 - - -
2.9059 3336 0.1146 - - -
2.9111 3342 0.0699 - - -
2.9164 3348 0.2239 - - -
2.9216 3354 0.2916 - - -
2.9268 3360 0.1078 - - -
2.9321 3366 0.2395 - - -
2.9373 3372 0.3056 - - -
2.9425 3378 0.0643 - - -
2.9477 3384 0.1579 - - -
2.9530 3390 0.2721 - - -
2.9582 3396 0.1975 - - -
2.9634 3402 0.1886 - - -
2.9686 3408 0.1968 - - -
2.9739 3414 0.0632 - - -
2.9791 3420 0.1413 - - -
2.9843 3426 0.1126 - - -
2.9895 3432 0.1712 - - -
2.9948 3438 0.042 - - -
3.0 3444 0.236 0.1238 0.9994 -
-1 -1 - - - 0.9994

Framework Versions

  • Python: 3.9.21
  • Sentence Transformers: 5.1.0
  • Transformers: 4.56.1
  • PyTorch: 2.8.0+cu129
  • Accelerate: 1.10.1
  • Datasets: 4.1.0
  • Tokenizers: 0.22.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
31
Safetensors
Model size
22.7M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Albertdebeauvais/all-MiniLM-L6-v2_cotes

Finetuned
(571)
this model

Evaluation results