See axolotl config
axolotl version: 0.4.1
base_model: meta-llama/Llama-3.2-3B-Instruct
strict: false
chat_template: llama3
datasets:
- path: AlekseyKorshuk/rewriter-v0.3-axolotl
type: chat_template
field_messages: messages
message_field_role: role
message_field_content: content
roles:
user:
- user
assistant:
- assistant
val_set_size: 0.05
output_dir: ./outputs/out
eval_table_size: 0
eval_max_new_tokens: 256
sequence_len: 2048
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: false
wandb_project: ai-seo-rewriter
wandb_entity:
wandb_watch:
wandb_name: rewriter-v0.3-3b
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 8
eval_batch_size: 4
num_epochs: 3
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 5e-6
train_on_inputs: false
group_by_length: false
bf16: true
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_ratio: 0.1
evals_per_epoch: 3
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
- full_shard
- auto_wrap
fsdp_config:
fsdp_limit_all_gathers: true
fsdp_sync_module_states: true
fsdp_offload_params: true
fsdp_use_orig_params: false
fsdp_cpu_ram_efficient_loading: true
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
fsdp_state_dict_type: FULL_STATE_DICT
fsdp_sharding_strategy: FULL_SHARD
fsdp_backward_prefetch: BACKWARD_PRE
special_tokens:
pad_token: <|end_of_text|>
hub_model_id: AlekseyKorshuk/rewriter-v0.3-axolotl-3b
rewriter-v0.3-axolotl-3b
This model is a fine-tuned version of meta-llama/Llama-3.2-3B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.5499
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 2
- num_epochs: 3
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 2.4604 | 0.125 | 1 | 2.6325 |
| 2.4024 | 0.375 | 3 | 2.3013 |
| 1.7954 | 0.75 | 6 | 1.7954 |
| 1.6675 | 1.125 | 9 | 1.6348 |
| 1.5832 | 1.5 | 12 | 1.5892 |
| 1.5656 | 1.875 | 15 | 1.5645 |
| 1.5368 | 2.25 | 18 | 1.5544 |
| 1.5304 | 2.625 | 21 | 1.5505 |
| 1.533 | 3.0 | 24 | 1.5499 |
Framework versions
- Transformers 4.45.2
- Pytorch 2.4.0+cu121
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 2
Model tree for AlekseyKorshuk/rewriter-v0.3-axolotl-3b
Base model
meta-llama/Llama-3.2-3B-Instruct