distilhubert-finetuned-gtzan
This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.7445
- Accuracy: 0.8
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|---|---|---|---|---|
| 2.0184 | 1.0 | 102 | 1.9378 | 0.4667 |
| 1.6074 | 2.0 | 204 | 1.4065 | 0.6111 |
| 1.1476 | 3.0 | 306 | 1.0998 | 0.7222 |
| 0.7849 | 4.0 | 408 | 0.9199 | 0.7667 |
| 0.7474 | 5.0 | 510 | 0.8500 | 0.7667 |
| 0.4345 | 6.0 | 612 | 0.8264 | 0.7556 |
| 0.3538 | 7.0 | 714 | 0.8353 | 0.7444 |
| 0.3889 | 8.0 | 816 | 0.7999 | 0.7667 |
| 0.18 | 9.0 | 918 | 0.7295 | 0.7889 |
| 0.1799 | 10.0 | 1020 | 0.7445 | 0.8 |
Framework versions
- Transformers 4.51.1
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 1
Model tree for AmritShankar/distilhubert-finetuned-gtzan
Base model
ntu-spml/distilhubertDataset used to train AmritShankar/distilhubert-finetuned-gtzan
Evaluation results
- Accuracy on GTZANself-reported0.800