AnasAlokla's picture
Update README.md
4dd0af9 verified
|
raw
history blame
7.21 kB
metadata
datasets:
  - AnasAlokla/multilingual_go_emotions
language:
  - ar
  - en
  - fr
  - es
  - de
  - tr
metrics:
  - accuracy
  - f1
  - recall
base_model:
  - google-bert/bert-base-multilingual-cased
new_version: AnasAlokla/multilingual_go_emotions
pipeline_tag: text-classification

Overview

Model trained from bert-base-multilingual-cased on the multilingual_go_emotions dataset for multi-label classification.

Multilingual GoEmotions Chatbot Task Report

Author: Anas Hamid Alokla

This repository/space contains details about a multilingual emotion classification model and chatbot based on the GoEmotions dataset.

Links

Test Set Performance

The following table shows the performance metrics of the fine-tuned model on the test set, broken down by emotion category.

The table below shows the performance of the test model:

Labels Accuracy Precision Recall F1 MCC Support Threshold
admiration 0.935 0.616 0.629 0.622 0.587 2790 0.20
amusement 0.969 0.706 0.800 0.750 0.735 1866 0.10
anger 0.956 0.360 0.344 0.352 0.329 1128 0.10
annoyance 0.925 0.274 0.263 0.268 0.229 1704 0.10
approval 0.904 0.286 0.330 0.306 0.256 2094 0.10
caring 0.962 0.299 0.370 0.331 0.314 816 0.10
confusion 0.961 0.369 0.333 0.350 0.331 1020 0.35
curiosity 0.932 0.404 0.569 0.473 0.445 1734 0.10
desire 0.985 0.412 0.418 0.415 0.407 414 0.35
disappointment 0.959 0.276 0.204 0.235 0.217 1014 0.25
disapproval 0.926 0.238 0.324 0.275 0.240 1398 0.10
disgust 0.977 0.364 0.297 0.327 0.317 600 0.25
embarrassment 0.993 0.538 0.292 0.378 0.393 240 0.85
excitement 0.971 0.285 0.327 0.305 0.291 624 0.20
fear 0.986 0.562 0.474 0.514 0.509 498 0.40
gratitude 0.989 0.928 0.890 0.909 0.903 2004 0.75
grief 0.998 0.273 0.333 0.300 0.301 36 0.15
joy 0.959 0.382 0.453 0.415 0.396 1032 0.20
love 0.972 0.734 0.780 0.757 0.742 1812 0.20
nervousness 0.995 0.339 0.358 0.348 0.346 120 0.20
optimism 0.970 0.553 0.427 0.482 0.471 1062 0.45
pride 0.997 0.387 0.286 0.329 0.331 84 0.15
realization 0.964 0.191 0.152 0.169 0.152 792 0.25
relief 0.992 0.129 0.145 0.137 0.133 138 0.10
remorse 0.986 0.566 0.614 0.589 0.583 516 0.25
sadness 0.968 0.506 0.444 0.473 0.457 1062 0.40
surprise 0.973 0.465 0.450 0.457 0.444 828 0.45
neutral 0.731 0.577 0.630 0.602 0.400 10524 0.10

Test Model Performance (Threshold = 0.5)

The table below shows the performance of the test model with a threshold of 0.5:

Label Accuracy Precision Recall F1 MCC Support Threshold
admiration 0.939 0.678 0.542 0.603 0.574 2790 0.5
amusement 0.970 0.760 0.693 0.725 0.710 1866 0.5
anger 0.964 0.471 0.210 0.291 0.299 1128 0.5
annoyance 0.944 0.383 0.100 0.158 0.175 1704 0.5
approval 0.934 0.472 0.176 0.256 0.260 2094 0.5
caring 0.973 0.424 0.246 0.312 0.310 816 0.5
confusion 0.964 0.399 0.310 0.349 0.333 1020 0.5
curiosity 0.945 0.480 0.375 0.421 0.396 1734 0.5
desire 0.985 0.420 0.394 0.406 0.399 414 0.5
disappointment 0.964 0.333 0.169 0.224 0.220 1014 0.5
disapproval 0.950 0.338 0.163 0.220 0.212 1398 0.5
disgust 0.979 0.390 0.252 0.306 0.303 600 0.5
embarrassment 0.992 0.430 0.333 0.376 0.375 240 0.5
excitement 0.976 0.324 0.237 0.274 0.265 624 0.5
fear 0.987 0.576 0.458 0.510 0.507 498 0.5
gratitude 0.988 0.905 0.903 0.904 0.898 2004 0.5
grief 0.999 0.294 0.139 0.189 0.202 36 0.5
joy 0.964 0.422 0.355 0.385 0.369 1032 0.5
love 0.972 0.771 0.714 0.741 0.727 1812 0.5
nervousness 0.995 0.351 0.275 0.308 0.308 120 0.5
optimism 0.971 0.566 0.416 0.480 0.471 1062 0.5
pride 0.997 0.432 0.226 0.297 0.311 84 0.5
realization 0.969 0.231 0.117 0.156 0.150 792 0.5
relief 0.994 0.143 0.065 0.090 0.094 138 0.5
remorse 0.987 0.603 0.562 0.582 0.576 516 0.5
sadness 0.969 0.531 0.424 0.471 0.458 1062 0.5
surprise 0.973 0.465 0.436 0.450 0.436 828 0.5
neutral 0.742 0.670 0.400 0.501 0.362 10524 0.5