|
|
--- |
|
|
license: apache-2.0 |
|
|
datasets: |
|
|
- BAAI/OPI |
|
|
language: |
|
|
- en |
|
|
pipeline_tag: text-generation |
|
|
tags: |
|
|
- Life Science |
|
|
- AI4Science |
|
|
- Biology |
|
|
- Protein |
|
|
- LLM |
|
|
- Instruction |
|
|
base_model: facebook/galactica-6.7b |
|
|
--- |
|
|
 |
|
|
|
|
|
# Github: |
|
|
https://github.com/baaihealth/opi |
|
|
# Paper: |
|
|
[OPI: An Open Instruction Dataset for Adapting Large Language Models to Protein-Related Tasks](https://neurips.cc/virtual/2024/105921) has been accepted by [NeurIPS 2024 Workshop: Foundation Models for Science: Progress, Opportunities, and Challenges](https://neurips.cc/virtual/2024/workshop/84714). |
|
|
|
|
|
# Model Card of OPI-Galactica-6.7B |
|
|
OPI-Galactica-6.7B was fine-tuned from the Galactica-6.7B model using the complete OPI training set (i.e.,[OPI_full_1.61M_train.json](https://huggingface.co/datasets/BAAI/OPI/blob/main/OPI_DATA/OPI_full_1.61M_train.json)). |
|
|
For more details of training and testing, please visit [https://github.com/baaihealth/opi](https://github.com/baaihealth/opi). |
|
|
|
|
|
 |
|
|
|
|
|
# Evaluation of OPI-Galactica-6.7B model on 9 tasks |
|
|
Each testing result is derived from the Galactica-6.7B model that has been fine-tuned using [OPI_full_1.61M.json](https://huggingface.co/datasets/BAAI/OPI/blob/main/OPI_DATA/OPI_full_1.61M_train.json) and subsequently evaluated on the respective testing set for each specific task. |
|
|
|
|
|
<table border="1" style="text-align:center; border-collapse:collapse; width: 100%;"> |
|
|
<thead> |
|
|
<tr> |
|
|
<th style="text-align:center;">Task Type</th> |
|
|
<th style="text-align:center;">Task Name</th> |
|
|
<th style="text-align:center;">Testing file</th> |
|
|
<th style="text-align:center;">Accuracy</th> |
|
|
<th style="text-align:center;">Precision</th> |
|
|
<th style="text-align:center;">Recall</th> |
|
|
<th style="text-align:center;">F1</th> |
|
|
<th style="text-align:center;">Rouge-L</th> |
|
|
</tr> |
|
|
</thead> |
|
|
<tbody> |
|
|
<tr> |
|
|
<td rowspan="6">Sequence Understanding</td> |
|
|
<td rowspan="2">EC Number Prediction (split100)</td> |
|
|
<td>CLEAN_EC_number_new_test</td> |
|
|
<td>-</td> |
|
|
<td>0.2700</td> |
|
|
<td>0.2663</td> |
|
|
<td>0.2596</td> |
|
|
<td>-</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>CLEAN_EC_number_price_test</td> |
|
|
<td>-</td> |
|
|
<td>0.0268</td> |
|
|
<td>0.0268</td> |
|
|
<td>0.0268</td> |
|
|
<td>-</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td rowspan="3">Fold Type Prediction</td> |
|
|
<td>fold_type_test_Fold_Holdout</td> |
|
|
<td>0.0808</td> |
|
|
<td>-</td> |
|
|
<td>-</td> |
|
|
<td>-</td> |
|
|
<td>-</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>fold_type_test_Superfamily_Holdout</td> |
|
|
<td>0.1348</td> |
|
|
<td>-</td> |
|
|
<td>-</td> |
|
|
<td>-</td> |
|
|
<td>-</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>fold_type_test_Family_Holdout</td> |
|
|
<td>0.4854</td> |
|
|
<td>-</td> |
|
|
<td>-</td> |
|
|
<td>-</td> |
|
|
<td>-</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>Subcellular Localization Prediction</td> |
|
|
<td>subcell_loc_test</td> |
|
|
<td>0.7771</td> |
|
|
<td>-</td> |
|
|
<td>-</td> |
|
|
<td>-</td> |
|
|
<td>-</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td rowspan="9">Annotation Prediction</td> |
|
|
<td>Function Keywords Prediction</td> |
|
|
<td>CASPSimilarSeq_keywords_test</td> |
|
|
<td>-</td> |
|
|
<td>0.8120</td> |
|
|
<td>0.7360</td> |
|
|
<td>0.7643</td> |
|
|
<td>-</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>Function Keywords Prediction</td> |
|
|
<td>IDFilterSeq_keywords_test</td> |
|
|
<td>-</td> |
|
|
<td>0.8377</td> |
|
|
<td>0.8019</td> |
|
|
<td>0.8070</td> |
|
|
<td>-</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>Function Keywords Prediction</td> |
|
|
<td>UniProtSeq_keywords_test</td> |
|
|
<td>-</td> |
|
|
<td>0.8596</td> |
|
|
<td>0.8196</td> |
|
|
<td>0.8276</td> |
|
|
<td>-</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>Gene Ontology (GO) Terms Prediction</td> |
|
|
<td>CASPSimilarSeq_go_terms_test</td> |
|
|
<td>-</td> |
|
|
<td>0.7613</td> |
|
|
<td>0.7492</td> |
|
|
<td>0.7476</td> |
|
|
<td>-</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>Gene Ontology (GO) Terms Prediction</td> |
|
|
<td>IDFilterSeq_go_terms_test</td> |
|
|
<td>-</td> |
|
|
<td>0.7404</td> |
|
|
<td>0.7274</td> |
|
|
<td>0.7207</td> |
|
|
<td>-</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>Gene Ontology (GO) Terms Prediction</td> |
|
|
<td>UniProtSeq_go_terms_test</td> |
|
|
<td>-</td> |
|
|
<td>0.7638</td> |
|
|
<td>0.7373</td> |
|
|
<td>0.7358</td> |
|
|
<td>-</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>Function Description Prediction</td> |
|
|
<td>CASPSimilarSeq_function_test</td> |
|
|
<td>-</td> |
|
|
<td>-</td> |
|
|
<td>-</td> |
|
|
<td>-</td> |
|
|
<td>0.7430</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>Function Description Prediction</td> |
|
|
<td>IDFilterSeq_function_test</td> |
|
|
<td>-</td> |
|
|
<td>-</td> |
|
|
<td>-</td> |
|
|
<td>-</td> |
|
|
<td>0.7014</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>Function Description Prediction</td> |
|
|
<td>UniProtSeq_function_test</td> |
|
|
<td>-</td> |
|
|
<td>-</td> |
|
|
<td>-</td> |
|
|
<td>-</td> |
|
|
<td>0.7133</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td rowspan="3">Knowledge Mining</td> |
|
|
<td>Tissue Location Prediction from Gene Symbol</td> |
|
|
<td>gene_symbol_to_tissue_test</td> |
|
|
<td>-</td> |
|
|
<td>0.3917</td> |
|
|
<td>0.9077</td> |
|
|
<td>0.5303</td> |
|
|
<td>-</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>Cancer Prediction from Gene Symbol</td> |
|
|
<td>gene_symbol_to_cancer_test</td> |
|
|
<td>-</td> |
|
|
<td>0.3555</td> |
|
|
<td>0.3189</td> |
|
|
<td>0.3229</td> |
|
|
<td>-</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>Cancer Prediction from Gene Name</td> |
|
|
<td>gene_name_to_cancer_test</td> |
|
|
<td>-</td> |
|
|
<td>0.2728</td> |
|
|
<td>0.2554</td> |
|
|
<td>0.2533</td> |
|
|
<td>-</td> |
|
|
</tr> |
|
|
</tbody> |
|
|
</table> |
|
|
|
|
|
# Prediction comparison with SOTA mdoels |
|
|
|
|
|
 |
|
|
 |
|
|
 |
|
|
 |
|
|
 |
|
|
 |
|
|
 |
|
|
 |
|
|
 |
|
|
|
|
|
|
|
|
# Demo |
|
|
We use the [FastChat](https://github.com/lm-sys/FastChat) platform to visually demonstrate the ability of OPI-Galactica-6.7B model on various evaluation tasks. |
|
|
|
|
|
 |