metadata
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
metrics:
- accuracy
widget:
- text: >-
: Nuestro Plan de Bacheo continúa acabando con los huecos de los diversos
sectores de nuestro municipio. Estuvimos interviniendo la Av. Ppal. de y
la Calle El Rocío de .
- text: >-
buenos días un cordial saludo es para preguntar como puedo hacer para
adquirir otro plan ya q no tengo papeles del codificador la dueña lo
vendío y se fue del país y no pude contactarla mas no me entregó
documentos todo esta legal pero quiero ponerlo a mi nombre
- text: >-
Si los empresarios facturan sus ventas a precio internacional (Dólares),
entonces porque no le exigirnos salarios con valor internacional?. Osea el
salario mínimo desde 400$ al cambio! Unos 11 millones de BS Soberanos!. Lo
que es igual no es trampa!.
- text: >-
Coño cuál juego de la violencia Henry,aquí la violencia viene de un solo
lado,en El Tocuyo y Carora cazaron a esos muchachos como animales
- text: >-
Una vez más vuelvo y digo . COMO ODIO SENTIRME DOMINADA X EL DOLAR nojoda
si no tengo una mierda de esa entonces no comemos mis hijos y yo tengo
unas ganas de quemar con todo y persona el malnacido que solo está
exigiendo verdes para venderte comida
pipeline_tag: text-classification
inference: true
base_model: sentence-transformers/distiluse-base-multilingual-cased-v1
model-index:
- name: SetFit with sentence-transformers/distiluse-base-multilingual-cased-v1
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 1
name: Accuracy
SetFit with sentence-transformers/distiluse-base-multilingual-cased-v1
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/distiluse-base-multilingual-cased-v1 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/distiluse-base-multilingual-cased-v1
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 128 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
| Label | Examples |
|---|---|
| 0 |
|
| 1 |
|
Evaluation
Metrics
| Label | Accuracy |
|---|---|
| all | 1.0 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("Coño cuál juego de la violencia Henry,aquí la violencia viene de un solo lado,en El Tocuyo y Carora cazaron a esos muchachos como animales")
Training Details
Training Set Metrics
| Training set | Min | Median | Max |
|---|---|---|---|
| Word count | 1 | 30.0686 | 76 |
| Label | Training Sample Count |
|---|---|
| 0 | 122 |
| 1 | 53 |
Training Hyperparameters
- batch_size: (32, 32)
- num_epochs: (2, 2)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (0.0001, 0.0001)
- head_learning_rate: 0.0001
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
| Epoch | Step | Training Loss | Validation Loss |
|---|---|---|---|
| 0.0018 | 1 | 0.408 | - |
| 0.0894 | 50 | 0.0144 | - |
| 0.1789 | 100 | 0.0002 | - |
| 0.2683 | 150 | 0.0 | - |
| 0.3578 | 200 | 0.0 | - |
| 0.4472 | 250 | 0.0 | - |
| 0.5367 | 300 | 0.0 | - |
| 0.6261 | 350 | 0.0 | - |
| 0.7156 | 400 | 0.0 | - |
| 0.8050 | 450 | 0.0 | - |
| 0.8945 | 500 | 0.0 | - |
| 0.9839 | 550 | 0.0 | - |
| 1.0733 | 600 | 0.0 | - |
| 1.1628 | 650 | 0.0 | - |
| 1.2522 | 700 | 0.0 | - |
| 1.3417 | 750 | 0.0 | - |
| 1.4311 | 800 | 0.0 | - |
| 1.5206 | 850 | 0.0 | - |
| 1.6100 | 900 | 0.0 | - |
| 1.6995 | 950 | 0.0 | - |
| 1.7889 | 1000 | 0.0 | - |
| 1.8784 | 1050 | 0.0 | - |
| 1.9678 | 1100 | 0.0 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.1
- Sentence Transformers: 2.2.2
- Transformers: 4.35.2
- PyTorch: 2.1.0+cu118
- Datasets: 2.15.0
- Tokenizers: 0.15.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}