Configuration Parsing Warning: In adapter_config.json: "peft.task_type" must be a string

vit-base-patch16-224-in21k-finetuned-breast-composition

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4735
  • Accuracy: 0.8057
  • F1: 0.8046
  • Precision: 0.8053
  • Recall: 0.8057

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 12
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
1.3733 0.1062 100 1.3716 0.3608 0.2980 0.3783 0.3608
1.3575 0.2125 200 1.3537 0.4026 0.3205 0.3988 0.4026
1.3262 0.3187 300 1.3186 0.4256 0.3125 0.4184 0.4256
1.2714 0.4250 400 1.2666 0.4562 0.3528 0.6333 0.4562
1.212 0.5312 500 1.2172 0.5161 0.4304 0.6528 0.5161
1.1533 0.6375 600 1.1610 0.5655 0.4831 0.6747 0.5655
1.0462 0.7437 700 1.0505 0.6136 0.5278 0.7080 0.6136
0.9731 0.8499 800 0.9478 0.6327 0.5451 0.7219 0.6327
0.9101 0.9562 900 0.8763 0.6438 0.5551 0.7303 0.6438
0.8524 1.0624 1000 0.8397 0.6431 0.5549 0.7130 0.6431
0.8274 1.1687 1100 0.7888 0.6571 0.5795 0.7088 0.6571
0.7976 1.2749 1200 0.7741 0.6578 0.5901 0.7111 0.6578
0.7717 1.3811 1300 0.7198 0.6857 0.6385 0.7203 0.6857
0.7298 1.4874 1400 0.6948 0.7015 0.6731 0.7208 0.7015
0.7192 1.5936 1500 0.6792 0.7124 0.6873 0.7297 0.7124
0.7003 1.6999 1600 0.6539 0.7266 0.7109 0.7354 0.7266
0.69 1.8061 1700 0.6349 0.7422 0.7326 0.7444 0.7422
0.6759 1.9124 1800 0.6228 0.7478 0.7404 0.7505 0.7478
0.6689 2.0186 1900 0.6154 0.7474 0.7429 0.7473 0.7474
0.6505 2.1248 2000 0.6064 0.7557 0.7542 0.7573 0.7557
0.6602 2.2311 2100 0.5888 0.7646 0.7615 0.7657 0.7646
0.6498 2.3373 2200 0.5815 0.7653 0.7622 0.7643 0.7653
0.6484 2.4436 2300 0.5692 0.7716 0.7684 0.7715 0.7716
0.6366 2.5498 2400 0.5698 0.7695 0.7670 0.7703 0.7695
0.6304 2.6560 2500 0.5651 0.7705 0.7668 0.7702 0.7705
0.5906 2.7623 2600 0.5663 0.7691 0.7628 0.7719 0.7691
0.607 2.8685 2700 0.5563 0.7733 0.7699 0.7737 0.7733
0.6211 2.9748 2800 0.5513 0.7745 0.7709 0.7753 0.7745
0.6043 3.0810 2900 0.5478 0.7760 0.7735 0.7761 0.7760
0.5905 3.1873 3000 0.5439 0.7778 0.7765 0.7771 0.7778
0.6309 3.2935 3100 0.5399 0.7774 0.7749 0.7770 0.7774
0.5975 3.3997 3200 0.5431 0.7792 0.7778 0.7786 0.7792
0.6175 3.5060 3300 0.5340 0.7813 0.7779 0.7829 0.7813
0.588 3.6122 3400 0.5293 0.7844 0.7817 0.7850 0.7844
0.5981 3.7185 3500 0.5265 0.7849 0.7832 0.7844 0.7849
0.5926 3.8247 3600 0.5335 0.7784 0.7732 0.7807 0.7784
0.5945 3.9309 3700 0.5249 0.7853 0.7821 0.7866 0.7853
0.5956 4.0372 3800 0.5325 0.7829 0.7788 0.7845 0.7829
0.5943 4.1434 3900 0.5295 0.7860 0.7837 0.7860 0.7860
0.5842 4.2497 4000 0.5227 0.7848 0.7813 0.7857 0.7848
0.5666 4.3559 4100 0.5187 0.7864 0.7833 0.7881 0.7864
0.5762 4.4622 4200 0.5179 0.7876 0.7859 0.7889 0.7876
0.595 4.5684 4300 0.5111 0.7909 0.7898 0.7902 0.7909
0.5641 4.6746 4400 0.5151 0.7888 0.7874 0.7890 0.7888
0.5743 4.7809 4500 0.5113 0.7894 0.7883 0.7907 0.7894
0.564 4.8871 4600 0.5075 0.7919 0.7902 0.7933 0.7919
0.578 4.9934 4700 0.5029 0.7921 0.7905 0.7918 0.7921
0.5643 5.0996 4800 0.5042 0.7931 0.7909 0.7945 0.7931
0.5611 5.2058 4900 0.5012 0.7940 0.7909 0.7959 0.7940
0.5736 5.3121 5000 0.5133 0.7864 0.7812 0.7919 0.7864
0.5635 5.4183 5100 0.5034 0.7947 0.7939 0.7950 0.7947
0.5653 5.5246 5200 0.4981 0.7966 0.7944 0.7982 0.7966
0.5664 5.6308 5300 0.4959 0.7951 0.7932 0.7950 0.7951
0.5689 5.7371 5400 0.4946 0.7972 0.7956 0.7969 0.7972
0.5394 5.8433 5500 0.5022 0.7928 0.7877 0.7979 0.7928
0.5645 5.9495 5600 0.4931 0.7965 0.7944 0.7974 0.7965
0.5588 6.0558 5700 0.4895 0.7990 0.7975 0.7990 0.7990
0.5539 6.1620 5800 0.4874 0.8008 0.7992 0.8010 0.8008
0.5504 6.2683 5900 0.4945 0.7970 0.7941 0.7996 0.7970
0.5683 6.3745 6000 0.4883 0.7985 0.7969 0.7983 0.7985
0.5594 6.4807 6100 0.4883 0.7985 0.7976 0.7980 0.7985
0.5709 6.5870 6200 0.4883 0.7976 0.7959 0.7983 0.7976
0.553 6.6932 6300 0.4907 0.7954 0.7931 0.7964 0.7954
0.5515 6.7995 6400 0.4893 0.7971 0.7945 0.7982 0.7971
0.5501 6.9057 6500 0.4821 0.7982 0.7969 0.7978 0.7982
0.5567 7.0120 6600 0.4851 0.7985 0.7955 0.8005 0.7985
0.5387 7.1182 6700 0.4808 0.8012 0.7995 0.8014 0.8012
0.5257 7.2244 6800 0.4795 0.8020 0.8008 0.8018 0.8020
0.5591 7.3307 6900 0.4809 0.8010 0.7980 0.8030 0.8010
0.5513 7.4369 7000 0.4747 0.8047 0.8033 0.8048 0.8047
0.5636 7.5432 7100 0.4760 0.8031 0.8018 0.8031 0.8031
0.5491 7.6494 7200 0.4787 0.8004 0.7981 0.8014 0.8004
0.5504 7.7556 7300 0.4745 0.8041 0.8026 0.8043 0.8041
0.5393 7.8619 7400 0.4829 0.7983 0.7950 0.8006 0.7983
0.543 7.9681 7500 0.4744 0.8047 0.8036 0.8046 0.8047
0.5308 8.0744 7600 0.4786 0.8018 0.7999 0.8022 0.8018
0.5341 8.1806 7700 0.4740 0.8037 0.8024 0.8036 0.8037
0.5351 8.2869 7800 0.4762 0.8035 0.8015 0.8043 0.8035
0.5309 8.3931 7900 0.4754 0.8053 0.8042 0.8051 0.8053
0.5409 8.4993 8000 0.4761 0.8036 0.8014 0.8049 0.8036
0.5368 8.6056 8100 0.4722 0.8052 0.8038 0.8051 0.8052
0.5276 8.7118 8200 0.4735 0.8057 0.8046 0.8053 0.8057
0.5388 8.8181 8300 0.4766 0.8020 0.8002 0.8022 0.8020
0.5368 8.9243 8400 0.4742 0.8037 0.8021 0.8036 0.8037
0.5574 9.0305 8500 0.4762 0.8034 0.8011 0.8047 0.8034
0.5562 9.1368 8600 0.4735 0.8034 0.8011 0.8046 0.8034
0.5577 9.2430 8700 0.4735 0.8048 0.8042 0.8048 0.8048
0.5398 9.3493 8800 0.4698 0.8056 0.8041 0.8058 0.8056
0.5224 9.4555 8900 0.4734 0.8040 0.8025 0.8041 0.8040
0.5392 9.5618 9000 0.4713 0.8051 0.8038 0.8051 0.8051
0.5346 9.6680 9100 0.4706 0.8048 0.8037 0.8044 0.8048
0.5295 9.7742 9200 0.4713 0.8041 0.8026 0.8040 0.8041
0.5607 9.8805 9300 0.4689 0.8051 0.8039 0.8050 0.8051
0.5354 9.9867 9400 0.4692 0.8057 0.8042 0.8058 0.8057
0.5427 10.0930 9500 0.4678 0.8056 0.8043 0.8053 0.8056
0.5216 10.1992 9600 0.4711 0.8036 0.8020 0.8036 0.8036
0.5348 10.3054 9700 0.4696 0.8054 0.8040 0.8053 0.8054
0.5319 10.4117 9800 0.4710 0.8047 0.8029 0.8049 0.8047
0.5465 10.5179 9900 0.4691 0.8049 0.8035 0.8048 0.8049
0.5387 10.6242 10000 0.4699 0.8042 0.8023 0.8046 0.8042
0.5431 10.7304 10100 0.4697 0.8045 0.8030 0.8044 0.8045
0.5358 10.8367 10200 0.4698 0.8043 0.8025 0.8045 0.8043
0.5506 10.9429 10300 0.4693 0.8047 0.8032 0.8045 0.8047
0.5049 11.0491 10400 0.4686 0.8051 0.8037 0.8050 0.8051
0.5338 11.1554 10500 0.4685 0.8058 0.8044 0.8056 0.8058
0.5411 11.2616 10600 0.4681 0.8056 0.8043 0.8054 0.8056
0.5414 11.3679 10700 0.4684 0.8053 0.8039 0.8050 0.8053
0.5438 11.4741 10800 0.4689 0.8053 0.8038 0.8052 0.8053
0.5271 11.5803 10900 0.4688 0.8050 0.8035 0.8049 0.8050
0.5292 11.6866 11000 0.4688 0.8049 0.8034 0.8049 0.8049
0.5318 11.7928 11100 0.4688 0.8046 0.8031 0.8045 0.8046
0.54 11.8991 11200 0.4688 0.8047 0.8032 0.8046 0.8047

Framework versions

  • PEFT 0.13.3.dev0
  • Transformers 4.44.2
  • Pytorch 2.5.0+cu121
  • Datasets 3.0.2
  • Tokenizers 0.19.1

image/png image/png image/png image/png image/png image/png image/png image/png image/png

image/png

Downloads last month
-
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for BTX24/vit-base-patch16-224-in21k-finetuned-breast-composition

Adapter
(97)
this model