BennyDaBall commited on
Commit
f9ea322
·
verified ·
1 Parent(s): aad0a2d

Upload 16 files

Browse files
.gitattributes ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ model-00001-of-00004.safetensors filter=lfs diff=lfs merge=lfs -text
2
+ model-00002-of-00004.safetensors filter=lfs diff=lfs merge=lfs -text
3
+ model-00003-of-00004.safetensors filter=lfs diff=lfs merge=lfs -text
4
+ model-00004-of-00004.safetensors filter=lfs diff=lfs merge=lfs -text
5
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
Qwen3 Coder a3b 480b DISTILL LM STUDIO TOOL USE.preset.json ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "identifier": "@local:qwen3-coder-a3b-480b-distill-lm-studio-tool-use",
3
+ "name": "Qwen3 Coder a3b - 480b DISTILL - LM STUDIO (TOOL USE)",
4
+ "changed": false,
5
+ "operation": {
6
+ "fields": [
7
+ {
8
+ "key": "llm.prediction.systemPrompt",
9
+ "value": "TOOL USE RULES\n- If you decide to call a tool, output the tool call ONLY. Do not output any other text in the same message.\n- Do NOT print control tokens like <start_of_turn>user or <start_of_turn>model in your output.\n- After a successful tool call, WAIT for the tool result. Do not immediately call the tool again unless the previous call failed or returned nextThoughtNeeded=true and you have NEW parameters.\n- Never call the same tool twice in a row with identical parameters.\n- After summarizing a tool result once, STOP."
10
+ },
11
+ {
12
+ "key": "llm.prediction.promptTemplate",
13
+ "value": {
14
+ "type": "jinja",
15
+ "jinjaPromptTemplate": {
16
+ "template": "{{ bos_token }}\n{%- if messages and messages[0]['role'] == 'system' -%}\n {%- set first_user_prefix = messages[0]['content'] ~ '\\n\\n' -%}\n {%- set loop_messages = messages[1:] -%}\n{%- else -%}\n {%- set first_user_prefix = '' -%}\n {%- set loop_messages = messages -%}\n{%- endif -%}\n{%- for message in loop_messages -%}\n {%- set role = 'model' if message['role'] == 'assistant' else message['role'] -%}\n {{ '<start_of_turn>' ~ role ~ '\\n' ~ (first_user_prefix if loop.first else '') }}\n {%- if message['content'] is string -%}\n {{ message['content'] | trim }}\n {%- elif message['content'] is iterable -%}\n {%- for item in message['content'] -%}\n {%- if item['type'] == 'image' -%}\n {{ '<start_of_image>' }}\n {%- elif item['type'] == 'text' -%}\n {{ item['text'] | trim }}\n {%- elif item['type'] == 'tool_call' -%}\n ```tool_code\n {{ item['code'] | trim }}\n ```\n {%- endif -%}\n {%- endfor -%}\n {%- else -%}\n {{ raise_exception('Invalid content type') }}\n {%- endif -%}\n {{ '<end_of_turn>\\n' }}\n{%- endfor -%}\n{%- if add_generation_prompt and (loop_messages | length == 0 or loop_messages[-1]['role'] == 'user') -%}\n {{ '<start_of_turn>model\\n' }}\n{%- endif -%}"
17
+ },
18
+ "stopStrings": [
19
+ "<end_of_turn>",
20
+ "<start_of_turn>user",
21
+ "<start_of_turn>model",
22
+ "<start_of_turn>tool"
23
+ ],
24
+ "manualPromptTemplate": {
25
+ "beforeSystem": "<|im_start|>system\n",
26
+ "afterSystem": "<|im_end|>\n",
27
+ "beforeUser": "<|im_start|>user\n",
28
+ "afterUser": "<|im_end|>\n",
29
+ "beforeAssistant": "<|im_start|>assistant\n",
30
+ "afterAssistant": "<|im_end|>\n"
31
+ }
32
+ }
33
+ },
34
+ {
35
+ "key": "llm.prediction.topPSampling",
36
+ "value": {
37
+ "checked": true,
38
+ "value": 0.8
39
+ }
40
+ },
41
+ {
42
+ "key": "llm.prediction.topKSampling",
43
+ "value": 20
44
+ },
45
+ {
46
+ "key": "llm.prediction.temperature",
47
+ "value": 0.7
48
+ },
49
+ {
50
+ "key": "llm.prediction.repeatPenalty",
51
+ "value": {
52
+ "checked": true,
53
+ "value": 1.05
54
+ }
55
+ }
56
+ ]
57
+ },
58
+ "load": {
59
+ "fields": []
60
+ }
61
+ }
added_tokens.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</think>": 151668,
3
+ "</tool_call>": 151658,
4
+ "</tool_response>": 151666,
5
+ "<think>": 151667,
6
+ "<tool_call>": 151657,
7
+ "<tool_response>": 151665,
8
+ "<|box_end|>": 151649,
9
+ "<|box_start|>": 151648,
10
+ "<|endoftext|>": 151643,
11
+ "<|file_sep|>": 151664,
12
+ "<|fim_middle|>": 151660,
13
+ "<|fim_pad|>": 151662,
14
+ "<|fim_prefix|>": 151659,
15
+ "<|fim_suffix|>": 151661,
16
+ "<|im_end|>": 151645,
17
+ "<|im_start|>": 151644,
18
+ "<|image_pad|>": 151655,
19
+ "<|object_ref_end|>": 151647,
20
+ "<|object_ref_start|>": 151646,
21
+ "<|quad_end|>": 151651,
22
+ "<|quad_start|>": 151650,
23
+ "<|repo_name|>": 151663,
24
+ "<|video_pad|>": 151656,
25
+ "<|vision_end|>": 151653,
26
+ "<|vision_pad|>": 151654,
27
+ "<|vision_start|>": 151652
28
+ }
chat_template.jinja ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {{ bos_token }}
2
+ {%- if messages and messages[0]['role'] == 'system' -%}
3
+ {%- set first_user_prefix = messages[0]['content'] ~ '\n\n' -%}
4
+ {%- set loop_messages = messages[1:] -%}
5
+ {%- else -%}
6
+ {%- set first_user_prefix = '' -%}
7
+ {%- set loop_messages = messages -%}
8
+ {%- endif -%}
9
+ {%- for message in loop_messages -%}
10
+ {%- set role = 'model' if message['role'] == 'assistant' else message['role'] -%}
11
+ {{ '<start_of_turn>' ~ role ~ '\n' ~ (first_user_prefix if loop.first else '') }}
12
+ {%- if message['content'] is string -%}
13
+ {{ message['content'] | trim }}
14
+ {%- elif message['content'] is iterable -%}
15
+ {%- for item in message['content'] -%}
16
+ {%- if item['type'] == 'image' -%}
17
+ {{ '<start_of_image>' }}
18
+ {%- elif item['type'] == 'text' -%}
19
+ {{ item['text'] | trim }}
20
+ {%- elif item['type'] == 'tool_call' -%}
21
+ ```tool_code
22
+ {{ item['code'] | trim }}
23
+ ```
24
+ {%- endif -%}
25
+ {%- endfor -%}
26
+ {%- else -%}
27
+ {{ raise_exception('Invalid content type') }}
28
+ {%- endif -%}
29
+ {{ '<end_of_turn>\n' }}
30
+ {%- endfor -%}
31
+ {%- if add_generation_prompt and (loop_messages | length == 0 or loop_messages[-1]['role'] == 'user') -%}
32
+ {{ '<start_of_turn>model\n' }}
33
+ {%- endif -%}
config.json ADDED
@@ -0,0 +1,433 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Qwen3MoeForCausalLM"
4
+ ],
5
+ "attention_dropout": 0.0,
6
+ "decoder_sparse_step": 1,
7
+ "eos_token_id": 151645,
8
+ "head_dim": 128,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 2048,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 5472,
13
+ "max_position_embeddings": 262144,
14
+ "max_window_layers": 28,
15
+ "mlp_only_layers": [],
16
+ "model_type": "qwen3_moe",
17
+ "moe_intermediate_size": 768,
18
+ "norm_topk_prob": true,
19
+ "num_attention_heads": 32,
20
+ "num_experts": 128,
21
+ "num_experts_per_tok": 8,
22
+ "num_hidden_layers": 48,
23
+ "num_key_value_heads": 4,
24
+ "output_router_logits": false,
25
+ "qkv_bias": false,
26
+ "quantization": {
27
+ "group_size": 32,
28
+ "bits": 4,
29
+ "mode": "affine",
30
+ "model.layers.0.mlp.gate": {
31
+ "group_size": 64,
32
+ "bits": 8
33
+ },
34
+ "model.layers.1.mlp.gate": {
35
+ "group_size": 64,
36
+ "bits": 8
37
+ },
38
+ "model.layers.2.mlp.gate": {
39
+ "group_size": 64,
40
+ "bits": 8
41
+ },
42
+ "model.layers.3.mlp.gate": {
43
+ "group_size": 64,
44
+ "bits": 8
45
+ },
46
+ "model.layers.4.mlp.gate": {
47
+ "group_size": 64,
48
+ "bits": 8
49
+ },
50
+ "model.layers.5.mlp.gate": {
51
+ "group_size": 64,
52
+ "bits": 8
53
+ },
54
+ "model.layers.6.mlp.gate": {
55
+ "group_size": 64,
56
+ "bits": 8
57
+ },
58
+ "model.layers.7.mlp.gate": {
59
+ "group_size": 64,
60
+ "bits": 8
61
+ },
62
+ "model.layers.8.mlp.gate": {
63
+ "group_size": 64,
64
+ "bits": 8
65
+ },
66
+ "model.layers.9.mlp.gate": {
67
+ "group_size": 64,
68
+ "bits": 8
69
+ },
70
+ "model.layers.10.mlp.gate": {
71
+ "group_size": 64,
72
+ "bits": 8
73
+ },
74
+ "model.layers.11.mlp.gate": {
75
+ "group_size": 64,
76
+ "bits": 8
77
+ },
78
+ "model.layers.12.mlp.gate": {
79
+ "group_size": 64,
80
+ "bits": 8
81
+ },
82
+ "model.layers.13.mlp.gate": {
83
+ "group_size": 64,
84
+ "bits": 8
85
+ },
86
+ "model.layers.14.mlp.gate": {
87
+ "group_size": 64,
88
+ "bits": 8
89
+ },
90
+ "model.layers.15.mlp.gate": {
91
+ "group_size": 64,
92
+ "bits": 8
93
+ },
94
+ "model.layers.16.mlp.gate": {
95
+ "group_size": 64,
96
+ "bits": 8
97
+ },
98
+ "model.layers.17.mlp.gate": {
99
+ "group_size": 64,
100
+ "bits": 8
101
+ },
102
+ "model.layers.18.mlp.gate": {
103
+ "group_size": 64,
104
+ "bits": 8
105
+ },
106
+ "model.layers.19.mlp.gate": {
107
+ "group_size": 64,
108
+ "bits": 8
109
+ },
110
+ "model.layers.20.mlp.gate": {
111
+ "group_size": 64,
112
+ "bits": 8
113
+ },
114
+ "model.layers.21.mlp.gate": {
115
+ "group_size": 64,
116
+ "bits": 8
117
+ },
118
+ "model.layers.22.mlp.gate": {
119
+ "group_size": 64,
120
+ "bits": 8
121
+ },
122
+ "model.layers.23.mlp.gate": {
123
+ "group_size": 64,
124
+ "bits": 8
125
+ },
126
+ "model.layers.24.mlp.gate": {
127
+ "group_size": 64,
128
+ "bits": 8
129
+ },
130
+ "model.layers.25.mlp.gate": {
131
+ "group_size": 64,
132
+ "bits": 8
133
+ },
134
+ "model.layers.26.mlp.gate": {
135
+ "group_size": 64,
136
+ "bits": 8
137
+ },
138
+ "model.layers.27.mlp.gate": {
139
+ "group_size": 64,
140
+ "bits": 8
141
+ },
142
+ "model.layers.28.mlp.gate": {
143
+ "group_size": 64,
144
+ "bits": 8
145
+ },
146
+ "model.layers.29.mlp.gate": {
147
+ "group_size": 64,
148
+ "bits": 8
149
+ },
150
+ "model.layers.30.mlp.gate": {
151
+ "group_size": 64,
152
+ "bits": 8
153
+ },
154
+ "model.layers.31.mlp.gate": {
155
+ "group_size": 64,
156
+ "bits": 8
157
+ },
158
+ "model.layers.32.mlp.gate": {
159
+ "group_size": 64,
160
+ "bits": 8
161
+ },
162
+ "model.layers.33.mlp.gate": {
163
+ "group_size": 64,
164
+ "bits": 8
165
+ },
166
+ "model.layers.34.mlp.gate": {
167
+ "group_size": 64,
168
+ "bits": 8
169
+ },
170
+ "model.layers.35.mlp.gate": {
171
+ "group_size": 64,
172
+ "bits": 8
173
+ },
174
+ "model.layers.36.mlp.gate": {
175
+ "group_size": 64,
176
+ "bits": 8
177
+ },
178
+ "model.layers.37.mlp.gate": {
179
+ "group_size": 64,
180
+ "bits": 8
181
+ },
182
+ "model.layers.38.mlp.gate": {
183
+ "group_size": 64,
184
+ "bits": 8
185
+ },
186
+ "model.layers.39.mlp.gate": {
187
+ "group_size": 64,
188
+ "bits": 8
189
+ },
190
+ "model.layers.40.mlp.gate": {
191
+ "group_size": 64,
192
+ "bits": 8
193
+ },
194
+ "model.layers.41.mlp.gate": {
195
+ "group_size": 64,
196
+ "bits": 8
197
+ },
198
+ "model.layers.42.mlp.gate": {
199
+ "group_size": 64,
200
+ "bits": 8
201
+ },
202
+ "model.layers.43.mlp.gate": {
203
+ "group_size": 64,
204
+ "bits": 8
205
+ },
206
+ "model.layers.44.mlp.gate": {
207
+ "group_size": 64,
208
+ "bits": 8
209
+ },
210
+ "model.layers.45.mlp.gate": {
211
+ "group_size": 64,
212
+ "bits": 8
213
+ },
214
+ "model.layers.46.mlp.gate": {
215
+ "group_size": 64,
216
+ "bits": 8
217
+ },
218
+ "model.layers.47.mlp.gate": {
219
+ "group_size": 64,
220
+ "bits": 8
221
+ }
222
+ },
223
+ "quantization_config": {
224
+ "group_size": 32,
225
+ "bits": 4,
226
+ "mode": "affine",
227
+ "model.layers.0.mlp.gate": {
228
+ "group_size": 64,
229
+ "bits": 8
230
+ },
231
+ "model.layers.1.mlp.gate": {
232
+ "group_size": 64,
233
+ "bits": 8
234
+ },
235
+ "model.layers.2.mlp.gate": {
236
+ "group_size": 64,
237
+ "bits": 8
238
+ },
239
+ "model.layers.3.mlp.gate": {
240
+ "group_size": 64,
241
+ "bits": 8
242
+ },
243
+ "model.layers.4.mlp.gate": {
244
+ "group_size": 64,
245
+ "bits": 8
246
+ },
247
+ "model.layers.5.mlp.gate": {
248
+ "group_size": 64,
249
+ "bits": 8
250
+ },
251
+ "model.layers.6.mlp.gate": {
252
+ "group_size": 64,
253
+ "bits": 8
254
+ },
255
+ "model.layers.7.mlp.gate": {
256
+ "group_size": 64,
257
+ "bits": 8
258
+ },
259
+ "model.layers.8.mlp.gate": {
260
+ "group_size": 64,
261
+ "bits": 8
262
+ },
263
+ "model.layers.9.mlp.gate": {
264
+ "group_size": 64,
265
+ "bits": 8
266
+ },
267
+ "model.layers.10.mlp.gate": {
268
+ "group_size": 64,
269
+ "bits": 8
270
+ },
271
+ "model.layers.11.mlp.gate": {
272
+ "group_size": 64,
273
+ "bits": 8
274
+ },
275
+ "model.layers.12.mlp.gate": {
276
+ "group_size": 64,
277
+ "bits": 8
278
+ },
279
+ "model.layers.13.mlp.gate": {
280
+ "group_size": 64,
281
+ "bits": 8
282
+ },
283
+ "model.layers.14.mlp.gate": {
284
+ "group_size": 64,
285
+ "bits": 8
286
+ },
287
+ "model.layers.15.mlp.gate": {
288
+ "group_size": 64,
289
+ "bits": 8
290
+ },
291
+ "model.layers.16.mlp.gate": {
292
+ "group_size": 64,
293
+ "bits": 8
294
+ },
295
+ "model.layers.17.mlp.gate": {
296
+ "group_size": 64,
297
+ "bits": 8
298
+ },
299
+ "model.layers.18.mlp.gate": {
300
+ "group_size": 64,
301
+ "bits": 8
302
+ },
303
+ "model.layers.19.mlp.gate": {
304
+ "group_size": 64,
305
+ "bits": 8
306
+ },
307
+ "model.layers.20.mlp.gate": {
308
+ "group_size": 64,
309
+ "bits": 8
310
+ },
311
+ "model.layers.21.mlp.gate": {
312
+ "group_size": 64,
313
+ "bits": 8
314
+ },
315
+ "model.layers.22.mlp.gate": {
316
+ "group_size": 64,
317
+ "bits": 8
318
+ },
319
+ "model.layers.23.mlp.gate": {
320
+ "group_size": 64,
321
+ "bits": 8
322
+ },
323
+ "model.layers.24.mlp.gate": {
324
+ "group_size": 64,
325
+ "bits": 8
326
+ },
327
+ "model.layers.25.mlp.gate": {
328
+ "group_size": 64,
329
+ "bits": 8
330
+ },
331
+ "model.layers.26.mlp.gate": {
332
+ "group_size": 64,
333
+ "bits": 8
334
+ },
335
+ "model.layers.27.mlp.gate": {
336
+ "group_size": 64,
337
+ "bits": 8
338
+ },
339
+ "model.layers.28.mlp.gate": {
340
+ "group_size": 64,
341
+ "bits": 8
342
+ },
343
+ "model.layers.29.mlp.gate": {
344
+ "group_size": 64,
345
+ "bits": 8
346
+ },
347
+ "model.layers.30.mlp.gate": {
348
+ "group_size": 64,
349
+ "bits": 8
350
+ },
351
+ "model.layers.31.mlp.gate": {
352
+ "group_size": 64,
353
+ "bits": 8
354
+ },
355
+ "model.layers.32.mlp.gate": {
356
+ "group_size": 64,
357
+ "bits": 8
358
+ },
359
+ "model.layers.33.mlp.gate": {
360
+ "group_size": 64,
361
+ "bits": 8
362
+ },
363
+ "model.layers.34.mlp.gate": {
364
+ "group_size": 64,
365
+ "bits": 8
366
+ },
367
+ "model.layers.35.mlp.gate": {
368
+ "group_size": 64,
369
+ "bits": 8
370
+ },
371
+ "model.layers.36.mlp.gate": {
372
+ "group_size": 64,
373
+ "bits": 8
374
+ },
375
+ "model.layers.37.mlp.gate": {
376
+ "group_size": 64,
377
+ "bits": 8
378
+ },
379
+ "model.layers.38.mlp.gate": {
380
+ "group_size": 64,
381
+ "bits": 8
382
+ },
383
+ "model.layers.39.mlp.gate": {
384
+ "group_size": 64,
385
+ "bits": 8
386
+ },
387
+ "model.layers.40.mlp.gate": {
388
+ "group_size": 64,
389
+ "bits": 8
390
+ },
391
+ "model.layers.41.mlp.gate": {
392
+ "group_size": 64,
393
+ "bits": 8
394
+ },
395
+ "model.layers.42.mlp.gate": {
396
+ "group_size": 64,
397
+ "bits": 8
398
+ },
399
+ "model.layers.43.mlp.gate": {
400
+ "group_size": 64,
401
+ "bits": 8
402
+ },
403
+ "model.layers.44.mlp.gate": {
404
+ "group_size": 64,
405
+ "bits": 8
406
+ },
407
+ "model.layers.45.mlp.gate": {
408
+ "group_size": 64,
409
+ "bits": 8
410
+ },
411
+ "model.layers.46.mlp.gate": {
412
+ "group_size": 64,
413
+ "bits": 8
414
+ },
415
+ "model.layers.47.mlp.gate": {
416
+ "group_size": 64,
417
+ "bits": 8
418
+ }
419
+ },
420
+ "rms_norm_eps": 1e-06,
421
+ "rope_scaling": null,
422
+ "rope_theta": 10000000,
423
+ "router_aux_loss_coef": 0.0,
424
+ "shared_expert_intermediate_size": 0,
425
+ "sliding_window": null,
426
+ "tie_word_embeddings": false,
427
+ "torch_dtype": "bfloat16",
428
+ "transformers_version": "4.52.3",
429
+ "use_cache": true,
430
+ "use_qk_norm": true,
431
+ "use_sliding_window": false,
432
+ "vocab_size": 151936
433
+ }
generation_config.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "pad_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "repetition_penalty": 1.05,
9
+ "temperature": 0.7,
10
+ "top_p": 0.8,
11
+ "top_k": 20
12
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4fb65aa867a695472c5e167d484332cdfcd6053553f36dc476c92665108c31a9
3
+ size 5271030693
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b838beb2bf7d79a16f8dccec9e5a4f7f5097a39369611fe043d55d60469e2545
3
+ size 5316125765
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b4a4383af06ad95c82f3c00400042bfe26a33551016851e2b3278562d2389d52
3
+ size 5328211659
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:08b8bedf6e8d4c508afb7f00950cf8bab348c1d432cb807c01b8a01f1f86c8a8
3
+ size 3173162067
model.safetensors.index.json ADDED
The diff for this file is too large to render. See raw diff
 
qwen3coder_tool_parser.py ADDED
@@ -0,0 +1,689 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
3
+ import ast
4
+ import json
5
+ import uuid
6
+ from collections.abc import Sequence
7
+ from typing import Any, List, Optional, Union
8
+
9
+ import regex as re
10
+
11
+ from vllm.entrypoints.openai.protocol import (ChatCompletionRequest,
12
+ ChatCompletionToolsParam,
13
+ DeltaFunctionCall, DeltaMessage,
14
+ DeltaToolCall,
15
+ ExtractedToolCallInformation,
16
+ FunctionCall, ToolCall)
17
+ from vllm.entrypoints.openai.tool_parsers.abstract_tool_parser import (
18
+ ToolParser, ToolParserManager)
19
+ from vllm.logger import init_logger
20
+ from vllm.transformers_utils.tokenizer import AnyTokenizer
21
+
22
+ logger = init_logger(__name__)
23
+
24
+
25
+ @ToolParserManager.register_module("qwen3_coder")
26
+ class Qwen3CoderToolParser(ToolParser):
27
+
28
+ def __init__(self, tokenizer: AnyTokenizer):
29
+ super().__init__(tokenizer)
30
+
31
+ self.current_tool_name_sent: bool = False
32
+ self.prev_tool_call_arr: list[dict] = []
33
+ self.current_tool_id: int = -1
34
+ self.streamed_args_for_tool: list[str] = []
35
+
36
+ # Sentinel tokens for streaming mode
37
+ self.tool_call_start_token: str = "<tool_call>"
38
+ self.tool_call_end_token: str = "</tool_call>"
39
+ self.tool_call_prefix: str = "<function="
40
+ self.function_end_token: str = "</function>"
41
+ self.parameter_prefix: str = "<parameter="
42
+ self.parameter_end_token: str = "</parameter>"
43
+ self.is_tool_call_started: bool = False
44
+ self.failed_count: int = 0
45
+
46
+ # Enhanced streaming state - reset for each new message
47
+ self._reset_streaming_state()
48
+
49
+ # Regex patterns
50
+ self.tool_call_complete_regex = re.compile(
51
+ r"<tool_call>(.*?)</tool_call>", re.DOTALL)
52
+ self.tool_call_regex = re.compile(
53
+ r"<tool_call>(.*?)</tool_call>|<tool_call>(.*?)$", re.DOTALL)
54
+ self.tool_call_function_regex = re.compile(
55
+ r"<function=(.*?)</function>|<function=(.*)$", re.DOTALL)
56
+ self.tool_call_parameter_regex = re.compile(
57
+ r"<parameter=(.*?)(?:</parameter>|(?=<parameter=)|(?=</function>)|$)",
58
+ re.DOTALL)
59
+
60
+ if not self.model_tokenizer:
61
+ raise ValueError(
62
+ "The model tokenizer must be passed to the ToolParser "
63
+ "constructor during construction.")
64
+
65
+ self.tool_call_start_token_id = self.vocab.get(
66
+ self.tool_call_start_token)
67
+ self.tool_call_end_token_id = self.vocab.get(self.tool_call_end_token)
68
+
69
+ if self.tool_call_start_token_id is None or self.tool_call_end_token_id is None:
70
+ raise RuntimeError(
71
+ "Qwen3 XML Tool parser could not locate tool call start/end "
72
+ "tokens in the tokenizer!")
73
+
74
+ logger.info(
75
+ f"vLLM Successfully import tool parser {self.__class__.__name__} !"
76
+ )
77
+
78
+ def _generate_tool_call_id(self) -> str:
79
+ """Generate a unique tool call ID."""
80
+ return f"call_{uuid.uuid4().hex[:24]}"
81
+
82
+ def _reset_streaming_state(self):
83
+ """Reset all streaming state."""
84
+ self.current_tool_index = 0
85
+ self.is_tool_call_started = False
86
+ self.header_sent = False
87
+ self.current_tool_id = None
88
+ self.current_function_name = None
89
+ self.current_param_name = None
90
+ self.current_param_value = ""
91
+ self.param_count = 0
92
+ self.in_param = False
93
+ self.in_function = False
94
+ self.accumulated_text = ""
95
+ self.json_started = False
96
+ self.json_closed = False
97
+ # Store accumulated parameters for type conversion
98
+ self.accumulated_params = {}
99
+ self.streaming_request = None
100
+
101
+ def _get_arguments_config(
102
+ self, func_name: str,
103
+ tools: Optional[list[ChatCompletionToolsParam]]) -> dict:
104
+ """Extract argument configuration for a function."""
105
+ if tools is None:
106
+ return {}
107
+ for config in tools:
108
+ if not hasattr(config, "type") or not (hasattr(
109
+ config, "function") and hasattr(config.function, "name")):
110
+ continue
111
+ if config.type == "function" and config.function.name == func_name:
112
+ if not hasattr(config.function, "parameters"):
113
+ return {}
114
+ params = config.function.parameters
115
+ if isinstance(params, dict) and "properties" in params:
116
+ return params["properties"]
117
+ elif isinstance(params, dict):
118
+ return params
119
+ else:
120
+ return {}
121
+ logger.warning(f"Tool '{func_name}' is not defined in the tools list.")
122
+ return {}
123
+
124
+ def _convert_param_value(self, param_value: str, param_name: str,
125
+ param_config: dict, func_name: str) -> Any:
126
+ """Convert parameter value based on its type in the schema."""
127
+ # Handle null value for any type
128
+ if param_value.lower() == "null":
129
+ return None
130
+
131
+ if param_name not in param_config:
132
+ if param_config != {}:
133
+ logger.warning(
134
+ f"Parsed parameter '{param_name}' is not defined in the tool "
135
+ f"parameters for tool '{func_name}', directly returning the string value."
136
+ )
137
+ return param_value
138
+
139
+ if isinstance(param_config[param_name],
140
+ dict) and "type" in param_config[param_name]:
141
+ param_type = str(param_config[param_name]["type"]).strip().lower()
142
+ else:
143
+ param_type = "string"
144
+ if param_type in ["string", "str", "text", "varchar", "char", "enum"]:
145
+ return param_value
146
+ elif param_type.startswith("int") or param_type.startswith(
147
+ "uint") or param_type.startswith(
148
+ "long") or param_type.startswith(
149
+ "short") or param_type.startswith("unsigned"):
150
+ try:
151
+ param_value = int(param_value)
152
+ except:
153
+ logger.warning(
154
+ f"Parsed value '{param_value}' of parameter '{param_name}' is not an integer in tool "
155
+ f"'{func_name}', degenerating to string.")
156
+ return param_value
157
+ elif param_type.startswith("num") or param_type.startswith("float"):
158
+ try:
159
+ float_param_value = float(param_value)
160
+ param_value = float_param_value if float_param_value - int(
161
+ float_param_value) != 0 else int(float_param_value)
162
+ except:
163
+ logger.warning(
164
+ f"Parsed value '{param_value}' of parameter '{param_name}' is not a float in tool "
165
+ f"'{func_name}', degenerating to string.")
166
+ return param_value
167
+ elif param_type in ["boolean", "bool", "binary"]:
168
+ param_value = param_value.lower()
169
+ if param_value not in ["true", "false"]:
170
+ logger.warning(
171
+ f"Parsed value '{param_value}' of parameter '{param_name}' is not a boolean (`true` of `false`) in tool '{func_name}', degenerating to false."
172
+ )
173
+ return param_value == "true"
174
+ else:
175
+ if param_type in ["object", "array", "arr"
176
+ ] or param_type.startswith(
177
+ "dict") or param_type.startswith("list"):
178
+ try:
179
+ param_value = json.loads(param_value)
180
+ return param_value
181
+ except:
182
+ logger.warning(
183
+ f"Parsed value '{param_value}' of parameter '{param_name}' cannot be parsed with json.loads in tool "
184
+ f"'{func_name}', will try other methods to parse it.")
185
+ try:
186
+ param_value = ast.literal_eval(param_value) # safer
187
+ except:
188
+ logger.warning(
189
+ f"Parsed value '{param_value}' of parameter '{param_name}' cannot be converted via Python `ast.literal_eval()` in tool '{func_name}', degenerating to string."
190
+ )
191
+ return param_value
192
+
193
+ def _parse_xml_function_call(
194
+ self, function_call_str: str,
195
+ tools: Optional[list[ChatCompletionToolsParam]]
196
+ ) -> Optional[ToolCall]:
197
+
198
+ # Extract function name
199
+ end_index = function_call_str.index(">")
200
+ function_name = function_call_str[:end_index]
201
+ param_config = self._get_arguments_config(function_name, tools)
202
+ parameters = function_call_str[end_index + 1:]
203
+ param_dict = {}
204
+ for match_text in self.tool_call_parameter_regex.findall(parameters):
205
+ idx = match_text.index(">")
206
+ param_name = match_text[:idx]
207
+ param_value = str(match_text[idx + 1:])
208
+ # Remove prefix and trailing \n
209
+ if param_value.startswith("\n"):
210
+ param_value = param_value[1:]
211
+ if param_value.endswith("\n"):
212
+ param_value = param_value[:-1]
213
+
214
+ param_dict[param_name] = self._convert_param_value(
215
+ param_value, param_name, param_config, function_name)
216
+ return ToolCall(
217
+ type="function",
218
+ function=FunctionCall(name=function_name,
219
+ arguments=json.dumps(param_dict,
220
+ ensure_ascii=False)),
221
+ )
222
+
223
+ def _get_function_calls(self, model_output: str) -> List[str]:
224
+ # Find all tool calls
225
+ matched_ranges = self.tool_call_regex.findall(model_output)
226
+ raw_tool_calls = [
227
+ match[0] if match[0] else match[1] for match in matched_ranges
228
+ ]
229
+
230
+ # Back-off strategy if no tool_call tags found
231
+ if len(raw_tool_calls) == 0:
232
+ raw_tool_calls = [model_output]
233
+
234
+ raw_function_calls = []
235
+ for tool_call in raw_tool_calls:
236
+ raw_function_calls.extend(
237
+ self.tool_call_function_regex.findall(tool_call))
238
+
239
+ function_calls = [
240
+ match[0] if match[0] else match[1] for match in raw_function_calls
241
+ ]
242
+ return function_calls
243
+
244
+ def extract_tool_calls(
245
+ self,
246
+ model_output: str,
247
+ request: ChatCompletionRequest,
248
+ ) -> ExtractedToolCallInformation:
249
+ # Quick check to avoid unnecessary processing
250
+ if self.tool_call_prefix not in model_output:
251
+ return ExtractedToolCallInformation(tools_called=False,
252
+ tool_calls=[],
253
+ content=model_output)
254
+
255
+ try:
256
+ function_calls = self._get_function_calls(model_output)
257
+ if len(function_calls) == 0:
258
+ return ExtractedToolCallInformation(tools_called=False,
259
+ tool_calls=[],
260
+ content=model_output)
261
+
262
+ tool_calls = [
263
+ self._parse_xml_function_call(function_call_str, request.tools)
264
+ for function_call_str in function_calls
265
+ ]
266
+
267
+ # Populate prev_tool_call_arr for serving layer to set finish_reason
268
+ self.prev_tool_call_arr.clear() # Clear previous calls
269
+ for tool_call in tool_calls:
270
+ if tool_call:
271
+ self.prev_tool_call_arr.append({
272
+ "name":
273
+ tool_call.function.name,
274
+ "arguments":
275
+ tool_call.function.arguments,
276
+ })
277
+
278
+ # Extract content before tool calls
279
+ content_index = model_output.find(self.tool_call_start_token)
280
+ content_index = content_index if content_index >= 0 else model_output.find(
281
+ self.tool_call_prefix)
282
+ content = model_output[:content_index] # .rstrip()
283
+
284
+ return ExtractedToolCallInformation(
285
+ tools_called=(len(tool_calls) > 0),
286
+ tool_calls=tool_calls,
287
+ content=content if content else None,
288
+ )
289
+
290
+ except Exception:
291
+ logger.exception("Error in extracting tool call from response.")
292
+ return ExtractedToolCallInformation(tools_called=False,
293
+ tool_calls=[],
294
+ content=model_output)
295
+
296
+ def extract_tool_calls_streaming(
297
+ self,
298
+ previous_text: str,
299
+ current_text: str,
300
+ delta_text: str,
301
+ previous_token_ids: Sequence[int],
302
+ current_token_ids: Sequence[int],
303
+ delta_token_ids: Sequence[int],
304
+ request: ChatCompletionRequest,
305
+ ) -> Union[DeltaMessage, None]:
306
+ # Store request for type conversion
307
+ if not previous_text:
308
+ self._reset_streaming_state()
309
+ self.streaming_request = request
310
+
311
+ # If no delta text, return None unless it's an EOS token after tool calls
312
+ if not delta_text:
313
+ # Check if this is an EOS token after all tool calls are complete
314
+ # We check for tool calls in the text even if is_tool_call_started is False
315
+ # because it might have been reset after processing all tools
316
+ if delta_token_ids and self.tool_call_end_token_id not in delta_token_ids:
317
+ # Count complete tool calls
318
+ complete_calls = len(
319
+ self.tool_call_complete_regex.findall(current_text))
320
+
321
+ # If we have completed tool calls and populated prev_tool_call_arr
322
+ if complete_calls > 0 and len(self.prev_tool_call_arr) > 0:
323
+ # Check if all tool calls are closed
324
+ open_calls = current_text.count(
325
+ self.tool_call_start_token) - current_text.count(
326
+ self.tool_call_end_token)
327
+ if open_calls == 0:
328
+ # Return empty delta message to allow finish_reason processing
329
+ return DeltaMessage(content="")
330
+ elif not self.is_tool_call_started and current_text:
331
+ # This is a regular content response that's now complete
332
+ return DeltaMessage(content="")
333
+ return None
334
+
335
+ # Update accumulated text
336
+ self.accumulated_text = current_text
337
+
338
+ # Check if we need to advance to next tool
339
+ if self.json_closed and not self.in_function:
340
+ # Check if this tool call has ended
341
+ tool_ends = current_text.count(self.tool_call_end_token)
342
+ if tool_ends > self.current_tool_index:
343
+ # This tool has ended, advance to next
344
+ self.current_tool_index += 1
345
+ self.header_sent = False
346
+ self.param_count = 0
347
+ self.json_started = False
348
+ self.json_closed = False
349
+ self.accumulated_params = {}
350
+
351
+ # Check if there are more tool calls
352
+ tool_starts = current_text.count(self.tool_call_start_token)
353
+ if self.current_tool_index >= tool_starts:
354
+ # No more tool calls
355
+ self.is_tool_call_started = False
356
+ # Continue processing next tool
357
+ return None
358
+
359
+ # Handle normal content before tool calls
360
+ if not self.is_tool_call_started:
361
+ # Check if tool call is starting
362
+ if self.tool_call_start_token_id in delta_token_ids or self.tool_call_start_token in delta_text:
363
+ self.is_tool_call_started = True
364
+ # Return any content before the tool call
365
+ if self.tool_call_start_token in delta_text:
366
+ content_before = delta_text[:delta_text.index(
367
+ self.tool_call_start_token)]
368
+ if content_before:
369
+ return DeltaMessage(content=content_before)
370
+ return None
371
+ else:
372
+ # Check if we're between tool calls - skip whitespace
373
+ if current_text.rstrip().endswith(self.tool_call_end_token):
374
+ # We just ended a tool call, skip whitespace
375
+ if delta_text.strip() == "":
376
+ return None
377
+ # Normal content, no tool call
378
+ return DeltaMessage(content=delta_text)
379
+
380
+ # Check if we're between tool calls (waiting for next one)
381
+ # Count tool calls we've seen vs processed
382
+ tool_starts_count = current_text.count(self.tool_call_start_token)
383
+ if self.current_tool_index >= tool_starts_count:
384
+ # We're past all tool calls, shouldn't be here
385
+ return None
386
+
387
+ # We're in a tool call, find the current tool call portion
388
+ # Need to find the correct tool call based on current_tool_index
389
+ tool_starts = []
390
+ idx = 0
391
+ while True:
392
+ idx = current_text.find(self.tool_call_start_token, idx)
393
+ if idx == -1:
394
+ break
395
+ tool_starts.append(idx)
396
+ idx += len(self.tool_call_start_token)
397
+
398
+ if self.current_tool_index >= len(tool_starts):
399
+ # No more tool calls to process yet
400
+ return None
401
+
402
+ tool_start_idx = tool_starts[self.current_tool_index]
403
+ # Find where this tool call ends (or current position if not ended yet)
404
+ tool_end_idx = current_text.find(self.tool_call_end_token,
405
+ tool_start_idx)
406
+ if tool_end_idx == -1:
407
+ tool_text = current_text[tool_start_idx:]
408
+ else:
409
+ tool_text = current_text[tool_start_idx:tool_end_idx +
410
+ len(self.tool_call_end_token)]
411
+
412
+ # Looking for function header
413
+ if not self.header_sent:
414
+ if self.tool_call_prefix in tool_text:
415
+ func_start = tool_text.find(self.tool_call_prefix) + len(
416
+ self.tool_call_prefix)
417
+ func_end = tool_text.find(">", func_start)
418
+
419
+ if func_end != -1:
420
+ # Found complete function name
421
+ self.current_function_name = tool_text[func_start:func_end]
422
+ self.current_tool_id = self._generate_tool_call_id()
423
+ self.header_sent = True
424
+ self.in_function = True
425
+
426
+ # IMPORTANT: Add to prev_tool_call_arr immediately when we detect a tool call
427
+ # This ensures finish_reason="tool_calls" even if parsing isn't complete
428
+ already_added = any(
429
+ tool.get("name") == self.current_function_name
430
+ for tool in self.prev_tool_call_arr)
431
+ if not already_added:
432
+ self.prev_tool_call_arr.append({
433
+ "name": self.current_function_name,
434
+ "arguments":
435
+ "{}", # Placeholder, will be updated later
436
+ })
437
+
438
+ # Send header with function info
439
+ return DeltaMessage(tool_calls=[
440
+ DeltaToolCall(
441
+ index=self.current_tool_index,
442
+ id=self.current_tool_id,
443
+ function=DeltaFunctionCall(
444
+ name=self.current_function_name, arguments=""),
445
+ type="function",
446
+ )
447
+ ])
448
+ return None
449
+
450
+ # We've sent header, now handle function body
451
+ if self.in_function:
452
+ # Send opening brace if not sent yet
453
+ if not self.json_started and self.parameter_prefix not in delta_text:
454
+ self.json_started = True
455
+ return DeltaMessage(tool_calls=[
456
+ DeltaToolCall(
457
+ index=self.current_tool_index,
458
+ function=DeltaFunctionCall(arguments="{"),
459
+ )
460
+ ])
461
+
462
+ # Make sure json_started is set if we're processing parameters
463
+ if not self.json_started:
464
+ self.json_started = True
465
+
466
+ # Check for function end in accumulated text
467
+ if not self.json_closed and self.function_end_token in tool_text:
468
+ # Close JSON
469
+ self.json_closed = True
470
+
471
+ # Extract the complete tool call to update prev_tool_call_arr with final arguments
472
+ # Find the function content
473
+ func_start = tool_text.find(self.tool_call_prefix) + len(
474
+ self.tool_call_prefix)
475
+ func_content_end = tool_text.find(self.function_end_token,
476
+ func_start)
477
+ if func_content_end != -1:
478
+ func_content = tool_text[func_start:func_content_end]
479
+ # Parse to get the complete arguments
480
+ try:
481
+ parsed_tool = self._parse_xml_function_call(
482
+ func_content, self.streaming_request.tools
483
+ if self.streaming_request else None)
484
+ if parsed_tool:
485
+ # Update existing entry in prev_tool_call_arr with complete arguments
486
+ for i, tool in enumerate(self.prev_tool_call_arr):
487
+ if tool.get(
488
+ "name") == parsed_tool.function.name:
489
+ self.prev_tool_call_arr[i][
490
+ "arguments"] = parsed_tool.function.arguments
491
+ break
492
+ except Exception:
493
+ pass # Ignore parsing errors during streaming
494
+
495
+ result = DeltaMessage(tool_calls=[
496
+ DeltaToolCall(
497
+ index=self.current_tool_index,
498
+ function=DeltaFunctionCall(arguments="}"),
499
+ )
500
+ ])
501
+
502
+ # Reset state for next tool
503
+ self.in_function = False
504
+ self.json_closed = True
505
+ self.accumulated_params = {}
506
+
507
+ return result
508
+
509
+ # Look for parameters
510
+ # Find all parameter starts
511
+ param_starts = []
512
+ idx = 0
513
+ while True:
514
+ idx = tool_text.find(self.parameter_prefix, idx)
515
+ if idx == -1:
516
+ break
517
+ param_starts.append(idx)
518
+ idx += len(self.parameter_prefix)
519
+
520
+ # Check if we should start a new parameter
521
+ if not self.in_param and self.param_count < len(param_starts):
522
+
523
+ if len(param_starts) > self.param_count:
524
+ # Process the next parameter
525
+ param_idx = param_starts[self.param_count]
526
+ param_start = param_idx + len(self.parameter_prefix)
527
+ remaining = tool_text[param_start:]
528
+
529
+ if ">" in remaining:
530
+ # We have the complete parameter name
531
+ name_end = remaining.find(">")
532
+ self.current_param_name = remaining[:name_end]
533
+
534
+ # Find the parameter value
535
+ value_start = param_start + name_end + 1
536
+ value_text = tool_text[value_start:]
537
+ if value_text.startswith("\n"):
538
+ value_text = value_text[1:]
539
+
540
+ # Find where this parameter ends
541
+ param_end_idx = value_text.find(
542
+ self.parameter_end_token)
543
+ if param_end_idx == -1:
544
+ # No closing tag, look for next parameter or function end
545
+ next_param_idx = value_text.find(
546
+ self.parameter_prefix)
547
+ func_end_idx = value_text.find(
548
+ self.function_end_token)
549
+
550
+ if next_param_idx != -1 and (func_end_idx == -1
551
+ or next_param_idx
552
+ < func_end_idx):
553
+ param_end_idx = next_param_idx
554
+ elif func_end_idx != -1:
555
+ param_end_idx = func_end_idx
556
+ else:
557
+ # Neither found, check if tool call is complete
558
+ if self.tool_call_end_token in tool_text:
559
+ # Tool call is complete, so parameter must be complete too
560
+ # Use all remaining text before function end as value
561
+ param_end_idx = len(value_text)
562
+ else:
563
+ # Still streaming, wait for more content
564
+ return None
565
+
566
+ if param_end_idx != -1:
567
+ # Complete parameter found
568
+ param_value = value_text[:param_end_idx]
569
+ if param_value.endswith("\n"):
570
+ param_value = param_value[:-1]
571
+
572
+ # Store raw value for later processing
573
+ self.accumulated_params[
574
+ self.current_param_name] = param_value
575
+
576
+ # Get parameter configuration for type conversion
577
+ param_config = self._get_arguments_config(
578
+ self.current_function_name,
579
+ self.streaming_request.tools
580
+ if self.streaming_request else None)
581
+
582
+ # Convert the parameter value to the appropriate type
583
+ converted_value = self._convert_param_value(
584
+ param_value, self.current_param_name,
585
+ param_config, self.current_function_name)
586
+
587
+ # Build JSON fragment based on the converted type
588
+ # Use json.dumps to properly serialize the value
589
+ serialized_value = json.dumps(converted_value,
590
+ ensure_ascii=False)
591
+
592
+ if self.param_count == 0:
593
+ json_fragment = f'"{self.current_param_name}": {serialized_value}'
594
+ else:
595
+ json_fragment = f', "{self.current_param_name}": {serialized_value}'
596
+
597
+ self.param_count += 1
598
+
599
+ return DeltaMessage(tool_calls=[
600
+ DeltaToolCall(
601
+ index=self.current_tool_index,
602
+ function=DeltaFunctionCall(
603
+ arguments=json_fragment),
604
+ )
605
+ ])
606
+
607
+ # Continue parameter value - Not used in the current implementation
608
+ # since we process complete parameters above
609
+ if self.in_param:
610
+ if self.parameter_end_token in delta_text:
611
+ # End of parameter
612
+ end_idx = delta_text.find(self.parameter_end_token)
613
+ value_chunk = delta_text[:end_idx]
614
+
615
+ # Skip past > if at start
616
+ if not self.current_param_value and ">" in value_chunk:
617
+ gt_idx = value_chunk.find(">")
618
+ value_chunk = value_chunk[gt_idx + 1:]
619
+
620
+ if not self.current_param_value and value_chunk.startswith(
621
+ "\n"):
622
+ value_chunk = value_chunk[1:]
623
+
624
+ # Store complete value
625
+ full_value = self.current_param_value + value_chunk
626
+ self.accumulated_params[
627
+ self.current_param_name] = full_value
628
+
629
+ # Get parameter configuration for type conversion
630
+ param_config = self._get_arguments_config(
631
+ self.current_function_name,
632
+ self.streaming_request.tools
633
+ if self.streaming_request else None)
634
+
635
+ # Convert the parameter value to the appropriate type
636
+ converted_value = self._convert_param_value(
637
+ full_value, self.current_param_name, param_config,
638
+ self.current_function_name)
639
+
640
+ # Serialize the converted value
641
+ serialized_value = json.dumps(converted_value,
642
+ ensure_ascii=False)
643
+
644
+ # Since we've been streaming the quoted version, we need to close it properly
645
+ # This is complex - for now just complete the value
646
+ self.in_param = False
647
+ self.current_param_value = ""
648
+
649
+ # Just close the current parameter string
650
+ return DeltaMessage(tool_calls=[
651
+ DeltaToolCall(
652
+ index=self.current_tool_index,
653
+ function=DeltaFunctionCall(
654
+ arguments='"'), # Close the string quote
655
+ )
656
+ ])
657
+ else:
658
+ # Continue accumulating value
659
+ value_chunk = delta_text
660
+
661
+ # Handle first chunk after param name
662
+ if not self.current_param_value and ">" in value_chunk:
663
+ gt_idx = value_chunk.find(">")
664
+ value_chunk = value_chunk[gt_idx + 1:]
665
+
666
+ if not self.current_param_value and value_chunk.startswith(
667
+ "\n"):
668
+ value_chunk = value_chunk[1:]
669
+
670
+ if value_chunk:
671
+ # Stream the escaped delta
672
+ prev_escaped = json.dumps(
673
+ self.current_param_value, ensure_ascii=False
674
+ )[1:-1] if self.current_param_value else ""
675
+ self.current_param_value += value_chunk
676
+ full_escaped = json.dumps(self.current_param_value,
677
+ ensure_ascii=False)[1:-1]
678
+ delta_escaped = full_escaped[len(prev_escaped):]
679
+
680
+ if delta_escaped:
681
+ return DeltaMessage(tool_calls=[
682
+ DeltaToolCall(
683
+ index=self.current_tool_index,
684
+ function=DeltaFunctionCall(
685
+ arguments=delta_escaped),
686
+ )
687
+ ])
688
+
689
+ return None
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aeb13307a71acd8fe81861d94ad54ab689df773318809eed3cbe794b4492dae4
3
+ size 11422654
tokenizer_config.json ADDED
@@ -0,0 +1,239 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "151665": {
182
+ "content": "<tool_response>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": false
188
+ },
189
+ "151666": {
190
+ "content": "</tool_response>",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": false
196
+ },
197
+ "151667": {
198
+ "content": "<think>",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": false
204
+ },
205
+ "151668": {
206
+ "content": "</think>",
207
+ "lstrip": false,
208
+ "normalized": false,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": false
212
+ }
213
+ },
214
+ "additional_special_tokens": [
215
+ "<|im_start|>",
216
+ "<|im_end|>",
217
+ "<|object_ref_start|>",
218
+ "<|object_ref_end|>",
219
+ "<|box_start|>",
220
+ "<|box_end|>",
221
+ "<|quad_start|>",
222
+ "<|quad_end|>",
223
+ "<|vision_start|>",
224
+ "<|vision_end|>",
225
+ "<|vision_pad|>",
226
+ "<|image_pad|>",
227
+ "<|video_pad|>"
228
+ ],
229
+ "bos_token": null,
230
+ "clean_up_tokenization_spaces": false,
231
+ "eos_token": "<|im_end|>",
232
+ "errors": "replace",
233
+ "extra_special_tokens": {},
234
+ "model_max_length": 1048576,
235
+ "pad_token": "<|endoftext|>",
236
+ "split_special_tokens": false,
237
+ "tokenizer_class": "Qwen2Tokenizer",
238
+ "unk_token": null
239
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff