CATIE French Summarization pack
Collection
7 items
•
Updated
Liquid.AI's LFM2 model finetuned on frenchSUM dataset to summarize French texts.
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "CATIE-AQ/LMF2-1.2B_french_summary"
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
torch_dtype="bfloat16",
trust_remote_code=True,
# attn_implementation="flash_attention_2" <- uncomment on compatible GPU
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
prompt = """Résume l'article suivant :\n""" + "you_text_to_summarize"
tokenizer.padding_side = "left"
tokenizer.truncation_side = "right"
# Apply the chat template to prepare the input
input_ids = tokenizer.apply_chat_template(
[{"role": "user", "content": prompt}],
add_generation_prompt=True,
return_tensors="pt",
tokenize=True,
).to(model.device)
# Generate the output from the model
output = model.generate(
input_ids,
do_sample=True,
temperature=0.3,
min_p=0.15,
repetition_penalty=1.05,
max_new_tokens=2048,
)
summary_text = tokenizer.decode(
output[0][input_ids.shape[1]:], # Slice the output tensor
skip_special_tokens=True # Skip special tokens for a cleaner output
)
print(summary_text)