MedQuAD LoRA r=4
Configuraci贸n
- Base:
mistralai/Mistral-7B-Instruct-v0.3 - LoRA r: 4
- M贸dulos: q_proj, k_proj, v_proj
- 4-bit NF4
- Early Stopping: patience=3
Entrenamiento
Training logs (manual, Epoch estimado):
| Step | Epoch | Training Loss | Validation Loss |
|---|---|---|---|
| 100 | 0.046 | 0.828600 | 0.803454 |
| 200 | 0.093 | 0.777600 | 0.771947 |
| 300 | 0.139 | 0.769300 | 0.762315 |
| 400 | 0.186 | 0.743100 | 0.748655 |
| 500 | 0.232 | 0.735500 | 0.736502 |
| 600 | 0.279 | 0.747600 | 0.731061 |
| 700 | 0.325 | 0.724700 | 0.712283 |
| 800 | 0.371 | 0.731100 | 0.711445 |
| 900 | 0.418 | 0.714400 | 0.695680 |
| 1000 | 0.464 | 0.696800 | 0.691712 |
| 1100 | 0.511 | 0.691600 | 0.686753 |
| 1200 | 0.557 | 0.662500 | 0.675322 |
| 1300 | 0.604 | 0.665600 | 0.674704 |
| 1400 | 0.650 | 0.669800 | 0.665284 |
| 1500 | 0.696 | 0.615200 | 0.659309 |
| 1600 | 0.743 | 0.610000 | 0.657043 |
| 1700 | 0.789 | 0.617000 | 0.651174 |
| 1800 | 0.836 | 0.620500 | 0.647198 |
| 1900 | 0.882 | 0.616600 | 0.645843 |
| 2000 | 0.929 | 0.607800 | 0.643516 |
| 2100 | 0.975 | 0.612100 | 0.641554 |
Uso
from peft import PeftModel
from transformers import AutoModelForCausalLM
base = AutoModelForCausalLM.from_pretrained('mistralai/Mistral-7B-Instruct-v0.3', load_in_4bit=True)
model = PeftModel.from_pretrained(base, 'CHF0101/medquad-lora-r4-best')
- Downloads last month
- -
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
馃檵
Ask for provider support