LongWriter-llama3.1-8b-Heretic

A decensored version of zai-org/LongWriter-llama3.1-8b, made using Heretic v1.1.0

LongWriter-llama3.1-8b-Heretic Original model (zai-org/LongWriter-llama3.1-8b)
Refusals 6/100 97/100
KL divergence 0.0216 0 (by definition)

Heretic Abliteration Parameters

Parameter Value
direction_index 15.56
attn.o_proj.max_weight 1.49
attn.o_proj.max_weight_position 24.79
attn.o_proj.min_weight 1.34
attn.o_proj.min_weight_distance 16.26
mlp.down_proj.max_weight 1.02
mlp.down_proj.max_weight_position 20.36
mlp.down_proj.min_weight 0.99
mlp.down_proj.min_weight_distance 14.67


LongWriter-llama3.1-8b

๐Ÿค— [LongWriter Dataset] โ€ข ๐Ÿ’ป [Github Repo] โ€ข ๐Ÿ“ƒ [LongWriter Paper]

LongWriter-llama3.1-8b is trained based on Meta-Llama-3.1-8B, and is capable of generating 10,000+ words at once.

Environment: transformers>=4.43.0

Please ahere to the prompt template (system prompt is optional): <<SYS>>\n{system prompt}\n<</SYS>>\n\n[INST]{query1}[/INST]{response1}[INST]{query2}[/INST]{response2}...

A simple demo for deployment of the model:

from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained("THUDM/LongWriter-llama3.1-8b", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("THUDM/LongWriter-llama3.1-8b", torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto")
model = model.eval()
query = "Write a 10000-word China travel guide"
prompt = f"[INST]{query}[/INST]"
input = tokenizer(prompt, truncation=False, return_tensors="pt").to(device)
context_length = input.input_ids.shape[-1]
output = model.generate(
    **input,
    max_new_tokens=32768,
    num_beams=1,
    do_sample=True,
    temperature=0.5,
)[0]
response = tokenizer.decode(output[context_length:], skip_special_tokens=True)
print(response)

You can also deploy the model with vllm, which allows 10,000+ words generation within a minute. Here is an example code:

model = LLM(
    model= "THUDM/LongWriter-llama3.1-8b",
    dtype="auto",
    trust_remote_code=True,
    tensor_parallel_size=1,
    max_model_len=32768,
    gpu_memory_utilization=0.5,
)
tokenizer = model.get_tokenizer()
generation_params = SamplingParams(
    temperature=0.5,
    top_p=0.8,
    top_k=50,
    max_tokens=32768,
    repetition_penalty=1,
)
query = "Write a 10000-word China travel guide"
prompt = f"[INST]{query}[/INST]"
input_ids = tokenizer(prompt, truncation=False, return_tensors="pt").input_ids[0].tolist()
outputs = model.generate(
    sampling_params=generation_params,
    prompt_token_ids=[input_ids],
)
output = outputs[0]
print(output.outputs[0].text)

License: Llama-3.1 License

Citation

If you find our work useful, please consider citing LongWriter:

@article{bai2024longwriter,
  title={LongWriter: Unleashing 10,000+ Word Generation from Long Context LLMs}, 
  author={Yushi Bai and Jiajie Zhang and Xin Lv and Linzhi Zheng and Siqi Zhu and Lei Hou and Yuxiao Dong and Jie Tang and Juanzi Li},
  journal={arXiv preprint arXiv:2408.07055},
  year={2024}
}
Downloads last month
4
Safetensors
Model size
8B params
Tensor type
F16
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Dataset used to train ChiKoi7/LongWriter-llama3.1-8b-Heretic