CrossEncoder based on deepvk/USER-bge-m3
This is a Cross Encoder model finetuned from deepvk/USER-bge-m3 using the sentence-transformers library. It computes scores for pairs of texts, which can be used for text pair classification.
Model Details
Model Description
- Model Type: Cross Encoder
- Base model: deepvk/USER-bge-m3
- Maximum Sequence Length: 8192 tokens
- Number of Output Labels: 2 labels
Model Sources
- Documentation: Sentence Transformers Documentation
- Documentation: Cross Encoder Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Cross Encoders on Hugging Face
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import CrossEncoder
# Download from the 🤗 Hub
model = CrossEncoder("Chimalpopoka/CrossEncoderRanker")
# Get scores for pairs of texts
pairs = [
['Панель №6 IgE (Сазан, карп, щука, судак, кефаль, ледяная рыба, пикша, осетр)', 'Сазан, (Cyprinus carpio), IgE, аллерген - e82. Метод: ИФА'],
['Определение антител класса M (IgM) к цитомегаловирусу (CytomegАlovirus) в крови', 'Бактериологическое исследование гнойного отделяемого: На аэробные и факультативно-анаэробные микроорганизмы. Метод: культуральный'],
['Исследования уровня бетта-изомеризованного C-концевого телопептида коллагена 1 типа (Beta-Cross laps) в крови', 'Глюкоза, в венозной крови'],
['Посев кала на диарогенные эшерихиозы (E. coli), закл., Кал', 'Коклюш (Bordetella pertussis): Антитела: IgG, (количественно). Метод: ИФА'],
['Ультразвуковое исследование поджелудочной железы (детям)', 'УЗИ поджелудочной железы, для детей'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5, 2)
Evaluation
Metrics
Cross Encoder Softmax Accuracy
- Dataset:
softmax_accuracy_eval - Evaluated with
CESoftmaxAccuracyEvaluator
| Metric | Value |
|---|---|
| f1_macro | 0.9772 |
| f1_micro | 0.9772 |
| f1_weighted | 0.9772 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 82,796 training samples
- Columns:
sentence_0,sentence_1, andlabel - Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string int details - min: 4 characters
- mean: 66.18 characters
- max: 504 characters
- min: 3 characters
- mean: 62.27 characters
- max: 385 characters
- 0: ~50.60%
- 1: ~49.40%
- Samples:
sentence_0 sentence_1 label Панель №6 IgE (Сазан, карп, щука, судак, кефаль, ледяная рыба, пикша, осетр)Сазан, (Cyprinus carpio), IgE, аллерген - e82. Метод: ИФА1Определение антител класса M (IgM) к цитомегаловирусу (CytomegАlovirus) в кровиБактериологическое исследование гнойного отделяемого: На аэробные и факультативно-анаэробные микроорганизмы. Метод: культуральный0Исследования уровня бетта-изомеризованного C-концевого телопептида коллагена 1 типа (Beta-Cross laps) в кровиГлюкоза, в венозной крови0 - Loss:
CrossEntropyLoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsnum_train_epochs: 1
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 8per_device_eval_batch_size: 8per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportionalrouter_mapping: {}learning_rate_mapping: {}
Training Logs
| Epoch | Step | Training Loss | softmax_accuracy_eval_f1_macro |
|---|---|---|---|
| 0.0483 | 500 | 0.5573 | - |
| 0.0966 | 1000 | 0.2189 | - |
| 0.1449 | 1500 | 0.2144 | - |
| 0.1932 | 2000 | 0.1876 | 0.9683 |
| 0.2415 | 2500 | 0.1812 | - |
| 0.2899 | 3000 | 0.1657 | - |
| 0.3382 | 3500 | 0.1796 | - |
| 0.3865 | 4000 | 0.1592 | 0.9702 |
| 0.4348 | 4500 | 0.156 | - |
| 0.4831 | 5000 | 0.1491 | - |
| 0.5314 | 5500 | 0.1555 | - |
| 0.5797 | 6000 | 0.1216 | 0.9683 |
| 0.6280 | 6500 | 0.1276 | - |
| 0.6763 | 7000 | 0.1305 | - |
| 0.7246 | 7500 | 0.1156 | - |
| 0.7729 | 8000 | 0.1197 | 0.9759 |
| 0.8213 | 8500 | 0.1215 | - |
| 0.8696 | 9000 | 0.1065 | - |
| 0.9179 | 9500 | 0.0896 | - |
| 0.9662 | 10000 | 0.1135 | 0.9772 |
Framework Versions
- Python: 3.12.3
- Sentence Transformers: 5.1.0
- Transformers: 4.53.2
- PyTorch: 2.7.1+cu126
- Accelerate: 1.10.1
- Datasets: 4.0.0
- Tokenizers: 0.21.2
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 53
Model tree for Chimalpopoka/CrossEncoderRanker
Base model
deepvk/USER-bge-m3Evaluation results
- F1 Macro on softmax accuracy evalself-reported0.977
- F1 Micro on softmax accuracy evalself-reported0.977
- F1 Weighted on softmax accuracy evalself-reported0.977