Chimalpopoka commited on
Commit
01eabc2
·
verified ·
1 Parent(s): 478fefa

First version of my trained model

Browse files
README.md ADDED
@@ -0,0 +1,356 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - cross-encoder
5
+ - reranker
6
+ - generated_from_trainer
7
+ - dataset_size:87398
8
+ - loss:CrossEntropyLoss
9
+ base_model: deepvk/USER-bge-m3
10
+ pipeline_tag: text-classification
11
+ library_name: sentence-transformers
12
+ metrics:
13
+ - f1_macro
14
+ - f1_micro
15
+ - f1_weighted
16
+ model-index:
17
+ - name: CrossEncoder based on deepvk/USER-bge-m3
18
+ results:
19
+ - task:
20
+ type: cross-encoder-softmax-accuracy
21
+ name: Cross Encoder Softmax Accuracy
22
+ dataset:
23
+ name: softmax accuracy eval
24
+ type: softmax_accuracy_eval
25
+ metrics:
26
+ - type: f1_macro
27
+ value: 0.9715485242270209
28
+ name: F1 Macro
29
+ - type: f1_micro
30
+ value: 0.9743012183884509
31
+ name: F1 Micro
32
+ - type: f1_weighted
33
+ value: 0.974262256621189
34
+ name: F1 Weighted
35
+ ---
36
+
37
+ # CrossEncoder based on deepvk/USER-bge-m3
38
+
39
+ This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [deepvk/USER-bge-m3](https://huggingface.co/deepvk/USER-bge-m3) using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for text pair classification.
40
+
41
+ ## Model Details
42
+
43
+ ### Model Description
44
+ - **Model Type:** Cross Encoder
45
+ - **Base model:** [deepvk/USER-bge-m3](https://huggingface.co/deepvk/USER-bge-m3) <!-- at revision 0cc6cfe48e260fb0474c753087a69369e88709ae -->
46
+ - **Maximum Sequence Length:** 8192 tokens
47
+ - **Number of Output Labels:** 2 labels
48
+ <!-- - **Training Dataset:** Unknown -->
49
+ <!-- - **Language:** Unknown -->
50
+ <!-- - **License:** Unknown -->
51
+
52
+ ### Model Sources
53
+
54
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
55
+ - **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html)
56
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
57
+ - **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder)
58
+
59
+ ## Usage
60
+
61
+ ### Direct Usage (Sentence Transformers)
62
+
63
+ First install the Sentence Transformers library:
64
+
65
+ ```bash
66
+ pip install -U sentence-transformers
67
+ ```
68
+
69
+ Then you can load this model and run inference.
70
+ ```python
71
+ from sentence_transformers import CrossEncoder
72
+
73
+ # Download from the 🤗 Hub
74
+ model = CrossEncoder("Chimalpopoka/CrossEncoderRanker")
75
+ # Get scores for pairs of texts
76
+ pairs = [
77
+ ['Панель аллергенов пыли № 1 IgE (домашняя пыль (Greer), клещ-дерматофаг перинный, клещ-дерматофаг мучной, таракан)', 'Смесь аллергенов пыли - hm1, Состав: домашняя пыль, Dermatophagoides pteronyssinus, Dermatophagoides farinae, таракан-прусак, IgE. Метод: ИФА'],
78
+ ['Жидкостная цитология РШМ', 'Жидкостная цитология. Исследование соскоба шейки матки и цервикального канала (окрашивание по Папаниколау)'],
79
+ ['Посев на возбудителей кишечной инфекции (сальмонеллы, шигеллы) с определением чувствительности к основному спектру антибиотиков', 'Посев кала на патогенную флору (дизентерийная и тифопаратифозная группы): С определением чувствительности к антибиотикам. Метод: культуральный'],
80
+ ['Молекулярно-генетическое исследование мутации в гене V617F (замена 617-ой аминокислоты с валина на фенилаланин) JAK2 (янус тирозин-киназа второго типа / Качественная оценка наличия соматической мутации V617F в 14 экзоне гена JAK2 (Qualitative assessment of presence of gene JAK2 617F somatic mutation)', 'Анализ мутации V617F гена JAK2 (замена валин на фенилаланин). Метод: ПЦР'],
81
+ ['Водородно-метановый дыхательный тест с лактулозой (СИБРТЕСТ, синдром избыточного бактериального роста в тонкой кишке, СИБР) (самостоятельное взятие проб)', 'Дыхательный водородный тест на СИБР'],
82
+ ]
83
+ scores = model.predict(pairs)
84
+ print(scores.shape)
85
+ # (5, 2)
86
+ ```
87
+
88
+ <!--
89
+ ### Direct Usage (Transformers)
90
+
91
+ <details><summary>Click to see the direct usage in Transformers</summary>
92
+
93
+ </details>
94
+ -->
95
+
96
+ <!--
97
+ ### Downstream Usage (Sentence Transformers)
98
+
99
+ You can finetune this model on your own dataset.
100
+
101
+ <details><summary>Click to expand</summary>
102
+
103
+ </details>
104
+ -->
105
+
106
+ <!--
107
+ ### Out-of-Scope Use
108
+
109
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
110
+ -->
111
+
112
+ ## Evaluation
113
+
114
+ ### Metrics
115
+
116
+ #### Cross Encoder Softmax Accuracy
117
+
118
+ * Dataset: `softmax_accuracy_eval`
119
+ * Evaluated with [<code>CESoftmaxAccuracyEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CESoftmaxAccuracyEvaluator)
120
+
121
+ | Metric | Value |
122
+ |:-------------|:-----------|
123
+ | **f1_macro** | **0.9715** |
124
+ | f1_micro | 0.9743 |
125
+ | f1_weighted | 0.9743 |
126
+
127
+ <!--
128
+ ## Bias, Risks and Limitations
129
+
130
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
131
+ -->
132
+
133
+ <!--
134
+ ### Recommendations
135
+
136
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
137
+ -->
138
+
139
+ ## Training Details
140
+
141
+ ### Training Dataset
142
+
143
+ #### Unnamed Dataset
144
+
145
+ * Size: 87,398 training samples
146
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
147
+ * Approximate statistics based on the first 1000 samples:
148
+ | | sentence_0 | sentence_1 | label |
149
+ |:--------|:-----------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|:------------------------------------------------|
150
+ | type | string | string | int |
151
+ | details | <ul><li>min: 5 characters</li><li>mean: 64.98 characters</li><li>max: 553 characters</li></ul> | <ul><li>min: 6 characters</li><li>mean: 63.31 characters</li><li>max: 477 characters</li></ul> | <ul><li>0: ~34.40%</li><li>1: ~65.60%</li></ul> |
152
+ * Samples:
153
+ | sentence_0 | sentence_1 | label |
154
+ |:---------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
155
+ | <code>Панель аллергенов пыли № 1 IgE (домашняя пыль (Greer), клещ-дерматофаг перинный, клещ-дерматофаг мучной, таракан)</code> | <code>Смесь аллергенов пыли - hm1, Состав: домашняя пыль, Dermatophagoides pteronyssinus, Dermatophagoides farinae, таракан-прусак, IgE. Метод: ИФА</code> | <code>1</code> |
156
+ | <code>Жидкостная цитология РШМ</code> | <code>Жидкостная цитология. Исследование соскоба шейки матки и цервикального канала (окрашивание по Папаниколау)</code> | <code>1</code> |
157
+ | <code>Посев на возбудителей кишечной инфекции (сальмонеллы, шигеллы) с определением чувствительности к основному спектру антибиотиков</code> | <code>Посев кала на патогенную флору (дизентерийная и тифопаратифозная группы): С определением чувствительности к антибиотикам. Метод: культуральный</code> | <code>1</code> |
158
+ * Loss: [<code>CrossEntropyLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#crossentropyloss)
159
+
160
+ ### Training Hyperparameters
161
+ #### Non-Default Hyperparameters
162
+
163
+ - `eval_strategy`: steps
164
+ - `num_train_epochs`: 1
165
+
166
+ #### All Hyperparameters
167
+ <details><summary>Click to expand</summary>
168
+
169
+ - `overwrite_output_dir`: False
170
+ - `do_predict`: False
171
+ - `eval_strategy`: steps
172
+ - `prediction_loss_only`: True
173
+ - `per_device_train_batch_size`: 8
174
+ - `per_device_eval_batch_size`: 8
175
+ - `per_gpu_train_batch_size`: None
176
+ - `per_gpu_eval_batch_size`: None
177
+ - `gradient_accumulation_steps`: 1
178
+ - `eval_accumulation_steps`: None
179
+ - `torch_empty_cache_steps`: None
180
+ - `learning_rate`: 5e-05
181
+ - `weight_decay`: 0.0
182
+ - `adam_beta1`: 0.9
183
+ - `adam_beta2`: 0.999
184
+ - `adam_epsilon`: 1e-08
185
+ - `max_grad_norm`: 1
186
+ - `num_train_epochs`: 1
187
+ - `max_steps`: -1
188
+ - `lr_scheduler_type`: linear
189
+ - `lr_scheduler_kwargs`: {}
190
+ - `warmup_ratio`: 0.0
191
+ - `warmup_steps`: 0
192
+ - `log_level`: passive
193
+ - `log_level_replica`: warning
194
+ - `log_on_each_node`: True
195
+ - `logging_nan_inf_filter`: True
196
+ - `save_safetensors`: True
197
+ - `save_on_each_node`: False
198
+ - `save_only_model`: False
199
+ - `restore_callback_states_from_checkpoint`: False
200
+ - `no_cuda`: False
201
+ - `use_cpu`: False
202
+ - `use_mps_device`: False
203
+ - `seed`: 42
204
+ - `data_seed`: None
205
+ - `jit_mode_eval`: False
206
+ - `use_ipex`: False
207
+ - `bf16`: False
208
+ - `fp16`: False
209
+ - `fp16_opt_level`: O1
210
+ - `half_precision_backend`: auto
211
+ - `bf16_full_eval`: False
212
+ - `fp16_full_eval`: False
213
+ - `tf32`: None
214
+ - `local_rank`: 0
215
+ - `ddp_backend`: None
216
+ - `tpu_num_cores`: None
217
+ - `tpu_metrics_debug`: False
218
+ - `debug`: []
219
+ - `dataloader_drop_last`: False
220
+ - `dataloader_num_workers`: 0
221
+ - `dataloader_prefetch_factor`: None
222
+ - `past_index`: -1
223
+ - `disable_tqdm`: False
224
+ - `remove_unused_columns`: True
225
+ - `label_names`: None
226
+ - `load_best_model_at_end`: False
227
+ - `ignore_data_skip`: False
228
+ - `fsdp`: []
229
+ - `fsdp_min_num_params`: 0
230
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
231
+ - `fsdp_transformer_layer_cls_to_wrap`: None
232
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
233
+ - `deepspeed`: None
234
+ - `label_smoothing_factor`: 0.0
235
+ - `optim`: adamw_torch
236
+ - `optim_args`: None
237
+ - `adafactor`: False
238
+ - `group_by_length`: False
239
+ - `length_column_name`: length
240
+ - `ddp_find_unused_parameters`: None
241
+ - `ddp_bucket_cap_mb`: None
242
+ - `ddp_broadcast_buffers`: False
243
+ - `dataloader_pin_memory`: True
244
+ - `dataloader_persistent_workers`: False
245
+ - `skip_memory_metrics`: True
246
+ - `use_legacy_prediction_loop`: False
247
+ - `push_to_hub`: False
248
+ - `resume_from_checkpoint`: None
249
+ - `hub_model_id`: None
250
+ - `hub_strategy`: every_save
251
+ - `hub_private_repo`: None
252
+ - `hub_always_push`: False
253
+ - `hub_revision`: None
254
+ - `gradient_checkpointing`: False
255
+ - `gradient_checkpointing_kwargs`: None
256
+ - `include_inputs_for_metrics`: False
257
+ - `include_for_metrics`: []
258
+ - `eval_do_concat_batches`: True
259
+ - `fp16_backend`: auto
260
+ - `push_to_hub_model_id`: None
261
+ - `push_to_hub_organization`: None
262
+ - `mp_parameters`:
263
+ - `auto_find_batch_size`: False
264
+ - `full_determinism`: False
265
+ - `torchdynamo`: None
266
+ - `ray_scope`: last
267
+ - `ddp_timeout`: 1800
268
+ - `torch_compile`: False
269
+ - `torch_compile_backend`: None
270
+ - `torch_compile_mode`: None
271
+ - `include_tokens_per_second`: False
272
+ - `include_num_input_tokens_seen`: False
273
+ - `neftune_noise_alpha`: None
274
+ - `optim_target_modules`: None
275
+ - `batch_eval_metrics`: False
276
+ - `eval_on_start`: False
277
+ - `use_liger_kernel`: False
278
+ - `liger_kernel_config`: None
279
+ - `eval_use_gather_object`: False
280
+ - `average_tokens_across_devices`: False
281
+ - `prompts`: None
282
+ - `batch_sampler`: batch_sampler
283
+ - `multi_dataset_batch_sampler`: proportional
284
+ - `router_mapping`: {}
285
+ - `learning_rate_mapping`: {}
286
+
287
+ </details>
288
+
289
+ ### Training Logs
290
+ | Epoch | Step | Training Loss | softmax_accuracy_eval_f1_macro |
291
+ |:------:|:-----:|:-------------:|:------------------------------:|
292
+ | 0.0458 | 500 | 0.5378 | - |
293
+ | 0.0915 | 1000 | 0.2207 | - |
294
+ | 0.1373 | 1500 | 0.2019 | - |
295
+ | 0.1831 | 2000 | 0.1981 | 0.9654 |
296
+ | 0.2288 | 2500 | 0.19 | - |
297
+ | 0.2746 | 3000 | 0.1703 | - |
298
+ | 0.3204 | 3500 | 0.217 | - |
299
+ | 0.3661 | 4000 | 0.1673 | 0.9627 |
300
+ | 0.4119 | 4500 | 0.1739 | - |
301
+ | 0.4577 | 5000 | 0.143 | - |
302
+ | 0.5034 | 5500 | 0.1522 | - |
303
+ | 0.5492 | 6000 | 0.1545 | 0.9703 |
304
+ | 0.5950 | 6500 | 0.1353 | - |
305
+ | 0.6407 | 7000 | 0.1438 | - |
306
+ | 0.6865 | 7500 | 0.1339 | - |
307
+ | 0.7323 | 8000 | 0.1355 | 0.9715 |
308
+ | 0.7780 | 8500 | 0.155 | - |
309
+ | 0.8238 | 9000 | 0.1256 | - |
310
+ | 0.8696 | 9500 | 0.1266 | - |
311
+ | 0.9153 | 10000 | 0.1027 | 0.9715 |
312
+
313
+
314
+ ### Framework Versions
315
+ - Python: 3.12.3
316
+ - Sentence Transformers: 5.1.0
317
+ - Transformers: 4.53.2
318
+ - PyTorch: 2.7.1+cu126
319
+ - Accelerate: 1.10.1
320
+ - Datasets: 4.0.0
321
+ - Tokenizers: 0.21.2
322
+
323
+ ## Citation
324
+
325
+ ### BibTeX
326
+
327
+ #### Sentence Transformers
328
+ ```bibtex
329
+ @inproceedings{reimers-2019-sentence-bert,
330
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
331
+ author = "Reimers, Nils and Gurevych, Iryna",
332
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
333
+ month = "11",
334
+ year = "2019",
335
+ publisher = "Association for Computational Linguistics",
336
+ url = "https://arxiv.org/abs/1908.10084",
337
+ }
338
+ ```
339
+
340
+ <!--
341
+ ## Glossary
342
+
343
+ *Clearly define terms in order to be accessible across audiences.*
344
+ -->
345
+
346
+ <!--
347
+ ## Model Card Authors
348
+
349
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
350
+ -->
351
+
352
+ <!--
353
+ ## Model Card Contact
354
+
355
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
356
+ -->
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "XLMRobertaForSequenceClassification"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "bos_token_id": 0,
7
+ "classifier_dropout": null,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 1024,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 4096,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 8194,
16
+ "model_type": "xlm-roberta",
17
+ "num_attention_heads": 16,
18
+ "num_hidden_layers": 24,
19
+ "output_past": true,
20
+ "pad_token_id": 1,
21
+ "position_embedding_type": "absolute",
22
+ "sentence_transformers": {
23
+ "activation_fn": "torch.nn.modules.linear.Identity",
24
+ "version": "5.1.0"
25
+ },
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.53.2",
28
+ "type_vocab_size": 1,
29
+ "use_cache": true,
30
+ "vocab_size": 46166
31
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eaa9d42c7aee85075ba233436b79292b6c3d73124c723b567251112f5402373a
3
+ size 1436163192
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": true,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "46165": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": true,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "extra_special_tokens": {},
49
+ "mask_token": "<mask>",
50
+ "max_length": 512,
51
+ "model_max_length": 8192,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "<pad>",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "</s>",
57
+ "sp_model_kwargs": {},
58
+ "stride": 0,
59
+ "tokenizer_class": "XLMRobertaTokenizerFast",
60
+ "truncation_side": "right",
61
+ "truncation_strategy": "longest_first",
62
+ "unk_token": "<unk>"
63
+ }