Chouoftears's picture
Upload safetensors checkpoint
7bd77c9 verified
---
license: other
base_model: Qwen/Qwen3-4B-Instruct-2507
datasets:
- custom
library_name: transformers
tags:
- sft
- instruction-tuning
- qwen
inference: false
---
# qwen3_4b_instruct_2507_sft_v1
This repository contains the supervised fine-tuning (SFT) checkpoint for a Qwen3 4B Instruct model trained with DeepSpeed ZeRO-3. The weights have been consolidated and exported to the Hugging Face safetensors format for easier deployment.
## Usage
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
repo_id = "Chouoftears/qwen3_4b_instruct_2507_sft_v1"
tokenizer = AutoTokenizer.from_pretrained(repo_id, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(repo_id, trust_remote_code=True)
```
## Training
- Base model: `Qwen/Qwen3-4B-Instruct-2507`
- Framework: `transformers==4.56.2`
- Optimization: DeepSpeed ZeRO Stage-3, bf16
- SFT run name: `qwen3-4B-Instruct-2507-toucan-sft-3ep`
- Max sequence length: 262,144 tokens (per config)
Refer to `training_args.bin` in the original run directory for the full trainer configuration.
## Files
- `model-0000X-of-00004.safetensors`: model weights shards
- `model.safetensors.index.json`: weight index map
- `config.json` / `generation_config.json`: architecture and generation defaults
- Tokenizer artifacts: `tokenizer.json`, `tokenizer_config.json`, `vocab.json`, `merges.txt`, `special_tokens_map.json`, `added_tokens.json`
- `chat_template.jinja`: conversation formatting used during SFT
## Limitations
This checkpoint inherits limitations from the base Qwen3 model and SFT data. Review and align with your downstream safety and compliance requirements before deployment.