ATSC-albert-base-v2-For-SemEval-2014-Task-4
This model is a fine-tuned version of albert/albert-base-v2 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.0392
- Accurancy: 0.8490
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed:
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 54
Training results
| Epoch | Training Loss | Validation Loss | Accuracy |
|---|---|---|---|
| 1 | 0.8649 | 0.8954 | 0.6497 |
| 2 | 0.6734 | 0.5684 | 0.7775 |
| 3 | 0.5461 | 0.4641 | 0.8097 |
| 4 | 0.4142 | 0.4540 | 0.8275 |
| 5 | 0.3211 | 0.5946 | 0.8034 |
| 6 | 0.2437 | 0.4974 | 0.8329 |
| 7 | 0.1958 | 0.4916 | 0.8168 |
| 8 | 0.1601 | 0.6348 | 0.8275 |
| 9 | 0.1095 | 0.6533 | 0.8293 |
| 10 | 0.0885 | 0.7212 | 0.8204 |
| 11 | 0.0714 | 0.7217 | 0.8240 |
| 12 | 0.0597 | 0.7698 | 0.8266 |
| 13 | 0.0420 | 0.7946 | 0.8400 |
| 14 | 0.0566 | 0.8103 | 0.8418 |
| 15 | 0.0389 | 0.9175 | 0.8275 |
| 16 | 0.0357 | 1.1165 | 0.8266 |
| 17 | 0.0205 | 1.0199 | 0.8302 |
| 18 | 0.0207 | 0.9885 | 0.8391 |
| 19 | 0.0155 | 1.0372 | 0.8374 |
| 20 | 0.0250 | 1.1147 | 0.8365 |
| 21 | 0.0198 | 1.0150 | 0.8472 |
| 22 | 0.0210 | 1.1716 | 0.8356 |
| 23 | 0.0208 | 1.0894 | 0.8454 |
| 24 | 0.0222 | 1.1699 | 0.8382 |
| 25 | 0.0196 | 1.2378 | 0.8338 |
| 26 | 0.0166 | 0.9921 | 0.8490 |
| 27 | 0.0115 | 1.0392 | 0.8490 |
| 28 | 0.0126 | 1.3480 | 0.8311 |
| 29 | 0.0107 | 1.2037 | 0.8427 |
| 30 | 0.0128 | 1.0996 | 0.8427 |
| 31 | 0.0128 | 1.1347 | 0.8320 |
| 32 | 0.0088 | 1.2735 | 0.8356 |
| 33 | 0.0083 | 1.2403 | 0.8409 |
| 34 | 0.0094 | 1.2600 | 0.8418 |
| 35 | 0.0072 | 1.2430 | 0.8454 |
| 36 | 0.0106 | 1.2740 | 0.8391 |
| 37 | 0.0093 | 1.1836 | 0.8427 |
| 38 | 0.0074 | 1.2132 | 0.8454 |
| 39 | 0.0071 | 1.1983 | 0.8463 |
| 40 | 0.0062 | 1.2708 | 0.8409 |
| 41 | 0.0068 | 1.2093 | 0.8463 |
| 42 | 0.0055 | 1.2593 | 0.8445 |
| 43 | 0.0055 | 1.2497 | 0.8445 |
| 44 | 0.0055 | 1.2530 | 0.8463 |
| 45 | 0.0051 | 1.2546 | 0.8463 |
| 46 | 0.0052 | 1.2513 | 0.8463 |
| 47 | 0.0054 | 1.2679 | 0.8481 |
| 48 | 0.0053 | 1.2839 | 0.8463 |
| 49 | 0.0048 | 1.2922 | 0.8445 |
| 50 | 0.0050 | 1.3092 | 0.8409 |
| 51 | 0.0052 | 1.2977 | 0.8436 |
| 52 | 0.0051 | 1.3066 | 0.8427 |
| 53 | 0.0051 | 1.3056 | 0.8436 |
| 54 | 0.0001 | 1.3047 | 0.8436 |
Framework versions
- Transformers 4.48.2
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 2
Model tree for Chow05/ATSC-albert-base-v2-For-SemEval-2014-Task-4
Base model
albert/albert-base-v2