Matryoshka Representation Learning
Paper
•
2205.13147
•
Published
•
25
This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-l. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("CoExperiences/snowflake-l-marketing-tuned")
# Run inference
sentences = [
"How does Alexis Krivkovich's perspective as a mother influence her optimism about the future of women in the workplace?",
'Lucia Rahilly: Sometimes, I feel that we’ve been talking about these issues since I was in college, and that can feel discouraging. What are you most optimistic about going into 2022, coming out of this Women in the Workplace report?\n\nAlexis Krivkovich: I’m most optimistic about the fact that we’re having an honest conversation, and now with a real fact base. We’re not talking about these things as perception but as real and measured experiences that companies can’t hide from—and they don’t want to.\n\nAs a mother of three young daughters, it gives me real hope because I’ve been thinking about this question for 20 years. But in 20 years, when they’re fully in the workplace, maybe we’ll have a totally different paradigm.',
'Learn more about the \nWork Happiness Score at: \ngo.indeed.com/happiness',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
InformationRetrievalEvaluator| Metric | Value |
|---|---|
| cosine_accuracy@1 | 0.81 |
| cosine_accuracy@3 | 0.93 |
| cosine_accuracy@5 | 0.97 |
| cosine_accuracy@10 | 0.98 |
| cosine_precision@1 | 0.81 |
| cosine_precision@3 | 0.31 |
| cosine_precision@5 | 0.194 |
| cosine_precision@10 | 0.098 |
| cosine_recall@1 | 0.81 |
| cosine_recall@3 | 0.93 |
| cosine_recall@5 | 0.97 |
| cosine_recall@10 | 0.98 |
| cosine_ndcg@10 | 0.9037 |
| cosine_mrr@10 | 0.8781 |
| cosine_map@100 | 0.8798 |
| dot_accuracy@1 | 0.81 |
| dot_accuracy@3 | 0.93 |
| dot_accuracy@5 | 0.97 |
| dot_accuracy@10 | 0.98 |
| dot_precision@1 | 0.81 |
| dot_precision@3 | 0.31 |
| dot_precision@5 | 0.194 |
| dot_precision@10 | 0.098 |
| dot_recall@1 | 0.81 |
| dot_recall@3 | 0.93 |
| dot_recall@5 | 0.97 |
| dot_recall@10 | 0.98 |
| dot_ndcg@10 | 0.9037 |
| dot_mrr@10 | 0.8781 |
| dot_map@100 | 0.8798 |
sentence_0 and sentence_1| sentence_0 | sentence_1 | |
|---|---|---|
| type | string | string |
| details |
|
|
| sentence_0 | sentence_1 |
|---|---|
What significant change occurred in employees' perceptions of their employer's care for their wellbeing during the pandemic? |
Workplace |
How does feeling cared for by an employer impact employees' job search behavior? |
Workplace |
What percentage of U.S. employees feel strongly that their organization cares about their wellbeing? |
Fewer than one in four U.S. employees feel strongly that their organization cares about their wellbeing -- the lowest percentage in nearly a decade. |
MatryoshkaLoss with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
eval_strategy: stepsper_device_train_batch_size: 20per_device_eval_batch_size: 20num_train_epochs: 5multi_dataset_batch_sampler: round_robinoverwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 20per_device_eval_batch_size: 20per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 5max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falsebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robin| Epoch | Step | cosine_map@100 |
|---|---|---|
| 1.0 | 30 | 0.8782 |
| 1.6667 | 50 | 0.8878 |
| 2.0 | 60 | 0.8854 |
| 3.0 | 90 | 0.8853 |
| 3.3333 | 100 | 0.8845 |
| 4.0 | 120 | 0.8793 |
| 5.0 | 150 | 0.8798 |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Base model
Snowflake/snowflake-arctic-embed-l