Multiclass Network Forensic Intrusion Detection System
A hybrid CNN-LSTM model for fine-grained, multiclass intrusion detection.
It serves as a detailed forensic tool to classify network attacks into 25 distinct categories.
Model Description
This model acts as a "second-stage" analysis tool. After an initial threat is detected (e.g., by a binary IDS), it identifies the specific nature of the attack.
- Architecture:
Conv1D -> ... -> LSTM -> Dense -> Dense (Softmax) - Dataset: CICIoT2023 curated subset
- Performance: 97% accuracy on the 25-class classification task
Intended Use
- Primary Use: Identify the type of network attack for forensic analysis.
- Input:
(batch_size, 10, 46)โ 46 normalized network features - Output: Softmax probabilities over 25 classes; highest probability indicates the predicted class
How to Use
import tensorflow as tf
import numpy as np
from huggingface_hub import hf_hub_download
# Download the model
MODEL_PATH = hf_hub_download("Codelord01/multiclass_model", "multiclass_model.keras")
model = tf.keras.models.load_model(MODEL_PATH)
model.summary()
# Define class names in the order used during training
CLASS_NAMES = [
'BenignTraffic', 'DDoS-ACK_Fragmentation', 'DDoS-HTTP_Flood', 'DDoS-ICMP_Flood',
'DDoS-ICMP_Fragmentation', 'DDoS-PSHACK_Flood', 'DDoS-RSTFINFlood', 'DDoS-SYN_Flood',
'DDoS-SlowLoris', 'DDoS-SynonymousIP_Flood', 'DDoS-TCP_Flood', 'DDoS-UDP_Flood',
'DDoS-UDP_Fragmentation', 'DNS_Spoofing', 'DoS-HTTP_Flood', 'DoS-SYN_Flood',
'DoS-TCP_Flood', 'DoS-UDP_Flood', 'MITM-ArpSpoofing', 'Mirai-greeth_flood',
'Mirai-greip_flood', 'Mirai-udpplain', 'OtherAttack', 'Recon-HostDiscovery',
'VulnerabilityScan'
]
# Sample input: 1 sample, 10 timesteps, 46 features
sample_data = np.random.rand(1, 10, 46).astype(np.float32)
# Make a prediction
prediction_probs = model.predict(sample_data)
predicted_index = np.argmax(prediction_probs)
predicted_class = CLASS_NAMES[predicted_index]
confidence = prediction_probs[predicted_index]
print(f"Predicted Attack Type: {predicted_class}")
print(f"Confidence: {confidence:.4f}")
## Limitations
- Validated only on CICIoT2023-like traffic
- Input must be normalized
- CLASS_NAMES must match training order
## Training Information
- Optimizer: Adam
- Loss: Categorical Cross-Entropy
- 25-class balanced dataset
@mastersthesis{ababio2025multilayered,
title={A Multi-Layered Hybrid Deep Learning Framework for Cyber-Physical Intrusion Detection in Climate-Monitoring IoT Systems},
author={Awuni David Ababio},
year={2025},
school={Kwame Nkrumah University of Science and Technology}
}
- Downloads last month
- 6
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support