code-contests-sandboxes-traces-terminus-2_global-batch-size_128
This model is a fine-tuned version of Qwen/Qwen3-8B on the mlfoundations-dev/code-contests-sandboxes-traces-terminus-2 dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
 - train_batch_size: 1
 - eval_batch_size: 8
 - seed: 42
 - distributed_type: multi-GPU
 - num_devices: 16
 - gradient_accumulation_steps: 8
 - total_train_batch_size: 128
 - total_eval_batch_size: 128
 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
 - lr_scheduler_type: cosine
 - lr_scheduler_warmup_ratio: 0.1
 - num_epochs: 5.0
 
Training results
Framework versions
- Transformers 4.55.0
 - Pytorch 2.7.0+cu128
 - Datasets 3.6.0
 - Tokenizers 0.21.1
 
- Downloads last month
 - 20