See axolotl config
axolotl version: 0.6.0
adapter: lora
base_model: unsloth/mistral-7b-instruct-v0.2
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 52967f47c0dda1d8_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/52967f47c0dda1d8_train_data.json
  type:
    field_input: ''
    field_instruction: dialogue
    field_output: reference
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 16
gradient_checkpointing: false
group_by_length: true
hub_model_id: DeepDream2045/606ec09a-57d7-4173-a94f-5f35ba61161a
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 1500
micro_batch_size: 2
mlflow_experiment_name: /tmp/52967f47c0dda1d8_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: offline
wandb_name: 711fced9-b718-476d-9eaf-c3b28a8aedc9
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 711fced9-b718-476d-9eaf-c3b28a8aedc9
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
606ec09a-57d7-4173-a94f-5f35ba61161a
This model is a fine-tuned version of unsloth/mistral-7b-instruct-v0.2 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.9904
 
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
 - train_batch_size: 2
 - eval_batch_size: 2
 - seed: 42
 - gradient_accumulation_steps: 16
 - total_train_batch_size: 32
 - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
 - lr_scheduler_type: cosine
 - lr_scheduler_warmup_steps: 10
 - training_steps: 1500
 
Training results
| Training Loss | Epoch | Step | Validation Loss | 
|---|---|---|---|
| 1.1731 | 0.1061 | 375 | 1.0257 | 
| 0.8656 | 0.2122 | 750 | 1.0092 | 
| 1.0833 | 0.3183 | 1125 | 0.9944 | 
| 0.6415 | 0.4244 | 1500 | 0.9904 | 
Framework versions
- PEFT 0.14.0
 - Transformers 4.46.3
 - Pytorch 2.5.1+cu124
 - Datasets 3.1.0
 - Tokenizers 0.20.3
 
- Downloads last month
 - -
 
	Inference Providers
	NEW
	
	
	This model isn't deployed by any Inference Provider.
	๐
			
		Ask for provider support
Model tree for DeepDream2045/606ec09a-57d7-4173-a94f-5f35ba61161a
Base model
unsloth/mistral-7b-instruct-v0.2