File size: 15,707 Bytes
d6f46cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 |
#!/usr/bin/env python3
"""
Helion-2.5-Rnd Advanced Data Loader
Efficient data loading and preprocessing for inference
"""
import json
import logging
from pathlib import Path
from typing import Any, Dict, Iterator, List, Optional, Union
import numpy as np
from safetensors.torch import load_file
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class SafeTensorsLoader:
"""Efficient SafeTensors model loading with validation"""
def __init__(self, model_path: str, device: str = "cuda"):
"""
Initialize SafeTensors loader
Args:
model_path: Path to model directory
device: Target device for loading
"""
self.model_path = Path(model_path)
self.device = device
self.index = self._load_index()
self.loaded_shards = {}
def _load_index(self) -> Dict:
"""Load SafeTensors index file"""
index_path = self.model_path / "model.safetensors.index.json"
if not index_path.exists():
raise FileNotFoundError(f"Index file not found: {index_path}")
with open(index_path, 'r') as f:
index = json.load(f)
logger.info(f"Loaded index with {len(index.get('weight_map', {}))} weight mappings")
return index
def get_shard_path(self, shard_name: str) -> Path:
"""Get full path to shard file"""
return self.model_path / shard_name
def load_shard(self, shard_name: str, lazy: bool = False) -> Dict:
"""
Load a single SafeTensors shard
Args:
shard_name: Name of shard file
lazy: Whether to use lazy loading
Returns:
Dictionary of tensors
"""
if shard_name in self.loaded_shards:
logger.debug(f"Using cached shard: {shard_name}")
return self.loaded_shards[shard_name]
shard_path = self.get_shard_path(shard_name)
if not shard_path.exists():
raise FileNotFoundError(f"Shard not found: {shard_path}")
logger.info(f"Loading shard: {shard_name}")
try:
tensors = load_file(str(shard_path), device=self.device)
if not lazy:
self.loaded_shards[shard_name] = tensors
return tensors
except Exception as e:
logger.error(f"Failed to load shard {shard_name}: {e}")
raise
def load_weight(self, weight_name: str) -> Any:
"""
Load a specific weight by name
Args:
weight_name: Name of the weight tensor
Returns:
Weight tensor
"""
weight_map = self.index.get('weight_map', {})
if weight_name not in weight_map:
raise KeyError(f"Weight not found in index: {weight_name}")
shard_name = weight_map[weight_name]
tensors = self.load_shard(shard_name)
return tensors[weight_name]
def load_all_weights(self, progress_callback=None) -> Dict:
"""
Load all model weights
Args:
progress_callback: Optional callback for progress updates
Returns:
Dictionary of all weights
"""
all_weights = {}
weight_map = self.index.get('weight_map', {})
unique_shards = set(weight_map.values())
logger.info(f"Loading {len(unique_shards)} shards...")
for i, shard_name in enumerate(sorted(unique_shards)):
tensors = self.load_shard(shard_name)
all_weights.update(tensors)
if progress_callback:
progress_callback(i + 1, len(unique_shards))
logger.info(f"Loaded {len(all_weights)} weight tensors")
return all_weights
def validate_checksums(self) -> Dict[str, bool]:
"""
Validate SHA256 checksums of all shards
Returns:
Dictionary mapping shard names to validation status
"""
import hashlib
results = {}
file_metadata = self.index.get('file_metadata', {})
for shard_name, metadata in file_metadata.items():
expected_hash = metadata.get('sha256')
if not expected_hash:
results[shard_name] = None
continue
shard_path = self.get_shard_path(shard_name)
if not shard_path.exists():
results[shard_name] = False
continue
sha256 = hashlib.sha256()
with open(shard_path, 'rb') as f:
for chunk in iter(lambda: f.read(4096), b''):
sha256.update(chunk)
actual_hash = sha256.hexdigest()
results[shard_name] = (actual_hash == expected_hash)
status = "✓" if results[shard_name] else "✗"
logger.info(f"{status} {shard_name}")
return results
def get_model_info(self) -> Dict:
"""Get model information from index"""
metadata = self.index.get('metadata', {})
return {
'model_name': metadata.get('model_name', 'Unknown'),
'version': metadata.get('version', 'Unknown'),
'total_size_bytes': metadata.get('total_size', 0),
'total_size_gb': metadata.get('total_size', 0) / (1024**3),
'format': metadata.get('format', 'safetensors'),
'precision': metadata.get('precision', 'unknown'),
'total_shards': metadata.get('total_shards', 0),
'parameters': metadata.get('parameters', 'Unknown')
}
def clear_cache(self):
"""Clear loaded shard cache"""
self.loaded_shards.clear()
logger.info("Cleared shard cache")
class DatasetPreprocessor:
"""Preprocess datasets for inference"""
def __init__(self, tokenizer=None, max_length: int = 131072):
"""
Initialize preprocessor
Args:
tokenizer: Tokenizer instance
max_length: Maximum sequence length
"""
self.tokenizer = tokenizer
self.max_length = max_length
def preprocess_text(self, text: str) -> str:
"""
Preprocess raw text
Args:
text: Input text
Returns:
Preprocessed text
"""
# Remove excessive whitespace
text = ' '.join(text.split())
# Remove control characters
text = ''.join(char for char in text if ord(char) >= 32 or char in '\n\t')
return text.strip()
def preprocess_chat_messages(self, messages: List[Dict[str, str]]) -> str:
"""
Preprocess chat messages into prompt format
Args:
messages: List of message dictionaries
Returns:
Formatted prompt string
"""
formatted = ""
for msg in messages:
role = msg.get('role', 'user')
content = self.preprocess_text(msg.get('content', ''))
formatted += f"<|im_start|>{role}\n{content}<|im_end|>\n"
formatted += "<|im_start|>assistant\n"
return formatted
def batch_preprocess(
self,
texts: List[str],
add_special_tokens: bool = True,
padding: bool = True,
truncation: bool = True
) -> Dict:
"""
Batch preprocess texts
Args:
texts: List of input texts
add_special_tokens: Whether to add special tokens
padding: Whether to pad sequences
truncation: Whether to truncate sequences
Returns:
Batch of preprocessed data
"""
if self.tokenizer is None:
raise ValueError("Tokenizer not initialized")
processed_texts = [self.preprocess_text(text) for text in texts]
encodings = self.tokenizer(
processed_texts,
add_special_tokens=add_special_tokens,
padding=padding,
truncation=truncation,
max_length=self.max_length,
return_tensors='pt'
)
return encodings
def stream_process_file(
self,
file_path: str,
batch_size: int = 32
) -> Iterator[Dict]:
"""
Stream process large files in batches
Args:
file_path: Path to input file
batch_size: Number of samples per batch
Yields:
Batches of preprocessed data
"""
path = Path(file_path)
if path.suffix == '.jsonl':
with open(path, 'r') as f:
batch = []
for line in f:
try:
data = json.loads(line)
text = data.get('text', '')
batch.append(text)
if len(batch) >= batch_size:
yield self.batch_preprocess(batch)
batch = []
except json.JSONDecodeError:
logger.warning(f"Skipping invalid JSON line")
if batch:
yield self.batch_preprocess(batch)
elif path.suffix == '.txt':
with open(path, 'r') as f:
batch = []
for line in f:
batch.append(line.strip())
if len(batch) >= batch_size:
yield self.batch_preprocess(batch)
batch = []
if batch:
yield self.batch_preprocess(batch)
else:
raise ValueError(f"Unsupported file format: {path.suffix}")
class InferenceDataCollator:
"""Collate data for efficient batch inference"""
def __init__(self, pad_token_id: int = 128001):
"""
Initialize data collator
Args:
pad_token_id: ID for padding token
"""
self.pad_token_id = pad_token_id
def __call__(self, features: List[Dict]) -> Dict:
"""
Collate features into batch
Args:
features: List of feature dictionaries
Returns:
Batched features
"""
if not features:
return {}
# Get maximum sequence length in batch
max_length = max(len(f['input_ids']) for f in features)
batch = {
'input_ids': [],
'attention_mask': []
}
for feature in features:
input_ids = feature['input_ids']
attention_mask = feature.get('attention_mask', [1] * len(input_ids))
# Pad to max length
padding_length = max_length - len(input_ids)
input_ids = input_ids + [self.pad_token_id] * padding_length
attention_mask = attention_mask + [0] * padding_length
batch['input_ids'].append(input_ids)
batch['attention_mask'].append(attention_mask)
# Convert to numpy arrays
batch['input_ids'] = np.array(batch['input_ids'], dtype=np.int64)
batch['attention_mask'] = np.array(batch['attention_mask'], dtype=np.int64)
return batch
def dynamic_padding(self, features: List[Dict], padding_multiple: int = 8) -> Dict:
"""
Apply dynamic padding optimized for hardware
Args:
features: List of feature dictionaries
padding_multiple: Pad to multiple of this value
Returns:
Batched features with optimal padding
"""
if not features:
return {}
max_length = max(len(f['input_ids']) for f in features)
# Round up to nearest multiple
padded_length = ((max_length + padding_multiple - 1) // padding_multiple) * padding_multiple
batch = {
'input_ids': [],
'attention_mask': []
}
for feature in features:
input_ids = feature['input_ids']
attention_mask = feature.get('attention_mask', [1] * len(input_ids))
padding_length = padded_length - len(input_ids)
input_ids = input_ids + [self.pad_token_id] * padding_length
attention_mask = attention_mask + [0] * padding_length
batch['input_ids'].append(input_ids)
batch['attention_mask'].append(attention_mask)
batch['input_ids'] = np.array(batch['input_ids'], dtype=np.int64)
batch['attention_mask'] = np.array(batch['attention_mask'], dtype=np.int64)
return batch
class CachedDataLoader:
"""Data loader with caching for repeated inference"""
def __init__(self, cache_dir: str = "./cache"):
"""
Initialize cached data loader
Args:
cache_dir: Directory for cache storage
"""
self.cache_dir = Path(cache_dir)
self.cache_dir.mkdir(parents=True, exist_ok=True)
def get_cache_key(self, text: str) -> str:
"""Generate cache key from text"""
import hashlib
return hashlib.sha256(text.encode()).hexdigest()
def load_from_cache(self, cache_key: str) -> Optional[Any]:
"""
Load data from cache
Args:
cache_key: Cache identifier
Returns:
Cached data or None
"""
cache_path = self.cache_dir / f"{cache_key}.json"
if not cache_path.exists():
return None
try:
with open(cache_path, 'r') as f:
return json.load(f)
except Exception as e:
logger.warning(f"Failed to load from cache: {e}")
return None
def save_to_cache(self, cache_key: str, data: Any):
"""
Save data to cache
Args:
cache_key: Cache identifier
data: Data to cache
"""
cache_path = self.cache_dir / f"{cache_key}.json"
try:
with open(cache_path, 'w') as f:
json.dump(data, f)
except Exception as e:
logger.warning(f"Failed to save to cache: {e}")
def clear_cache(self):
"""Clear all cached data"""
import shutil
shutil.rmtree(self.cache_dir)
self.cache_dir.mkdir(parents=True, exist_ok=True)
logger.info("Cache cleared")
def main():
"""Example usage"""
# SafeTensors loading
loader = SafeTensorsLoader("./models/helion")
# Get model info
info = loader.get_model_info()
print(f"Model: {info['model_name']}")
print(f"Size: {info['total_size_gb']:.2f} GB")
print(f"Shards: {info['total_shards']}")
# Validate checksums
print("\nValidating checksums...")
results = loader.validate_checksums()
valid_count = sum(1 for v in results.values() if v)
print(f"Valid: {valid_count}/{len(results)}")
if __name__ == "__main__":
main() |