File size: 12,920 Bytes
f15baf7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 |
#!/usr/bin/env python3
"""
Helion-2.5-Rnd Evaluation Script
Comprehensive benchmark evaluation across multiple datasets
"""
import argparse
import json
import logging
import os
from collections import defaultdict
from pathlib import Path
from typing import Dict, List, Optional
import torch
from datasets import load_dataset
from tqdm import tqdm
from transformers import AutoModelForCausalLM, AutoTokenizer
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
class HelionEvaluator:
"""Evaluation framework for Helion model"""
def __init__(
self,
model_path: str,
device: str = "cuda",
batch_size: int = 1,
max_length: int = 2048
):
"""
Initialize evaluator
Args:
model_path: Path to model or HuggingFace model ID
device: Device to run evaluation on
batch_size: Batch size for evaluation
max_length: Maximum sequence length
"""
logger.info(f"Loading model from {model_path}")
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
self.model = AutoModelForCausalLM.from_pretrained(
model_path,
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True
)
self.device = device
self.batch_size = batch_size
self.max_length = max_length
logger.info("Model loaded successfully")
def generate(
self,
prompt: str,
max_new_tokens: int = 512,
temperature: float = 0.0,
**kwargs
) -> str:
"""Generate text from prompt"""
inputs = self.tokenizer(
prompt,
return_tensors="pt",
truncation=True,
max_length=self.max_length
).to(self.device)
with torch.no_grad():
outputs = self.model.generate(
**inputs,
max_new_tokens=max_new_tokens,
temperature=temperature if temperature > 0 else 1.0,
do_sample=temperature > 0,
pad_token_id=self.tokenizer.pad_token_id,
**kwargs
)
response = self.tokenizer.decode(
outputs[0][inputs['input_ids'].shape[1]:],
skip_special_tokens=True
)
return response.strip()
def evaluate_mmlu(self, num_samples: Optional[int] = None) -> Dict:
"""Evaluate on MMLU benchmark"""
logger.info("Evaluating on MMLU...")
dataset = load_dataset("cais/mmlu", "all", split="test")
if num_samples:
dataset = dataset.select(range(min(num_samples, len(dataset))))
correct = 0
total = 0
for example in tqdm(dataset, desc="MMLU"):
question = example["question"]
choices = example["choices"]
answer = example["answer"]
# Format prompt
prompt = f"Question: {question}\n\nChoices:\n"
for i, choice in enumerate(choices):
prompt += f"{chr(65+i)}. {choice}\n"
prompt += "\nAnswer: "
# Generate response
response = self.generate(prompt, max_new_tokens=10, temperature=0.0)
# Extract answer
pred = response.strip()[0].upper() if response else ""
correct_answer = chr(65 + answer)
if pred == correct_answer:
correct += 1
total += 1
accuracy = correct / total if total > 0 else 0
return {
"benchmark": "MMLU",
"accuracy": accuracy,
"correct": correct,
"total": total
}
def evaluate_gsm8k(self, num_samples: Optional[int] = None) -> Dict:
"""Evaluate on GSM8K mathematical reasoning"""
logger.info("Evaluating on GSM8K...")
dataset = load_dataset("gsm8k", "main", split="test")
if num_samples:
dataset = dataset.select(range(min(num_samples, len(dataset))))
correct = 0
total = 0
for example in tqdm(dataset, desc="GSM8K"):
question = example["question"]
answer = example["answer"]
# Extract numerical answer
import re
match = re.search(r'####\s*(-?\d+(?:,\d+)*(?:\.\d+)?)', answer)
if not match:
continue
correct_answer = match.group(1).replace(',', '')
# Format prompt
prompt = f"Question: {question}\n\nLet's solve this step by step:\n"
# Generate response
response = self.generate(prompt, max_new_tokens=512, temperature=0.0)
# Extract predicted answer
pred_match = re.search(r'(?:answer is|=)\s*(-?\d+(?:,\d+)*(?:\.\d+)?)', response.lower())
if pred_match:
pred_answer = pred_match.group(1).replace(',', '')
if pred_answer == correct_answer:
correct += 1
total += 1
accuracy = correct / total if total > 0 else 0
return {
"benchmark": "GSM8K",
"accuracy": accuracy,
"correct": correct,
"total": total
}
def evaluate_humaneval(self, num_samples: Optional[int] = None) -> Dict:
"""Evaluate on HumanEval code generation"""
logger.info("Evaluating on HumanEval...")
try:
dataset = load_dataset("openai_humaneval", split="test")
except:
logger.warning("HumanEval dataset not available")
return {"benchmark": "HumanEval", "error": "Dataset not available"}
if num_samples:
dataset = dataset.select(range(min(num_samples, len(dataset))))
results = []
for example in tqdm(dataset, desc="HumanEval"):
prompt = example["prompt"]
# Generate code
full_prompt = f"Complete the following Python function:\n\n{prompt}"
response = self.generate(
full_prompt,
max_new_tokens=512,
temperature=0.0
)
# Extract code
code = prompt + response
results.append({
"task_id": example["task_id"],
"completion": code,
"test": example["test"]
})
# Note: Full evaluation requires executing code
# This is a simplified version
return {
"benchmark": "HumanEval",
"samples_generated": len(results),
"note": "Full evaluation requires code execution framework"
}
def evaluate_truthfulqa(self, num_samples: Optional[int] = None) -> Dict:
"""Evaluate on TruthfulQA"""
logger.info("Evaluating on TruthfulQA...")
dataset = load_dataset("truthful_qa", "generation", split="validation")
if num_samples:
dataset = dataset.select(range(min(num_samples, len(dataset))))
responses = []
for example in tqdm(dataset, desc="TruthfulQA"):
question = example["question"]
prompt = f"Question: {question}\n\nProvide a truthful and accurate answer:\nAnswer: "
response = self.generate(prompt, max_new_tokens=256, temperature=0.0)
responses.append({
"question": question,
"response": response,
"best_answer": example["best_answer"],
"correct_answers": example["correct_answers"],
"incorrect_answers": example["incorrect_answers"]
})
return {
"benchmark": "TruthfulQA",
"samples_evaluated": len(responses),
"note": "Manual review required for truthfulness assessment"
}
def evaluate_all(
self,
output_file: Optional[str] = None,
num_samples: Optional[int] = None
) -> Dict:
"""Run all evaluations"""
logger.info("Starting comprehensive evaluation...")
results = {
"model": "DeepXR/Helion-2.5-Rnd",
"benchmarks": {}
}
# Run evaluations
try:
results["benchmarks"]["mmlu"] = self.evaluate_mmlu(num_samples)
except Exception as e:
logger.error(f"MMLU evaluation failed: {e}")
results["benchmarks"]["mmlu"] = {"error": str(e)}
try:
results["benchmarks"]["gsm8k"] = self.evaluate_gsm8k(num_samples)
except Exception as e:
logger.error(f"GSM8K evaluation failed: {e}")
results["benchmarks"]["gsm8k"] = {"error": str(e)}
try:
results["benchmarks"]["humaneval"] = self.evaluate_humaneval(num_samples)
except Exception as e:
logger.error(f"HumanEval evaluation failed: {e}")
results["benchmarks"]["humaneval"] = {"error": str(e)}
try:
results["benchmarks"]["truthfulqa"] = self.evaluate_truthfulqa(num_samples)
except Exception as e:
logger.error(f"TruthfulQA evaluation failed: {e}")
results["benchmarks"]["truthfulqa"] = {"error": str(e)}
# Save results
if output_file:
output_path = Path(output_file)
output_path.parent.mkdir(parents=True, exist_ok=True)
with open(output_path, 'w') as f:
json.dump(results, f, indent=2)
logger.info(f"Results saved to {output_path}")
# Print summary
logger.info("\n" + "="*50)
logger.info("EVALUATION SUMMARY")
logger.info("="*50)
for benchmark, result in results["benchmarks"].items():
if "accuracy" in result:
logger.info(f"{benchmark.upper()}: {result['accuracy']:.2%}")
elif "error" in result:
logger.info(f"{benchmark.upper()}: ERROR - {result['error']}")
else:
logger.info(f"{benchmark.upper()}: {result.get('note', 'Completed')}")
return results
def main():
"""Main evaluation entry point"""
parser = argparse.ArgumentParser(description="Evaluate Helion model")
parser.add_argument(
"--model",
type=str,
required=True,
help="Model path or HuggingFace ID"
)
parser.add_argument(
"--benchmarks",
type=str,
nargs="+",
default=["all"],
choices=["all", "mmlu", "gsm8k", "humaneval", "truthfulqa"],
help="Benchmarks to run"
)
parser.add_argument(
"--output",
type=str,
default="evaluation_results.json",
help="Output file for results"
)
parser.add_argument(
"--num-samples",
type=int,
default=None,
help="Number of samples to evaluate (for quick testing)"
)
parser.add_argument(
"--device",
type=str,
default="cuda",
help="Device to use"
)
parser.add_argument(
"--batch-size",
type=int,
default=1,
help="Batch size"
)
args = parser.parse_args()
# Initialize evaluator
evaluator = HelionEvaluator(
model_path=args.model,
device=args.device,
batch_size=args.batch_size
)
# Run evaluations
if "all" in args.benchmarks:
results = evaluator.evaluate_all(
output_file=args.output,
num_samples=args.num_samples
)
else:
results = {"model": args.model, "benchmarks": {}}
if "mmlu" in args.benchmarks:
results["benchmarks"]["mmlu"] = evaluator.evaluate_mmlu(args.num_samples)
if "gsm8k" in args.benchmarks:
results["benchmarks"]["gsm8k"] = evaluator.evaluate_gsm8k(args.num_samples)
if "humaneval" in args.benchmarks:
results["benchmarks"]["humaneval"] = evaluator.evaluate_humaneval(args.num_samples)
if "truthfulqa" in args.benchmarks:
results["benchmarks"]["truthfulqa"] = evaluator.evaluate_truthfulqa(args.num_samples)
# Save results
with open(args.output, 'w') as f:
json.dump(results, f, indent=2)
logger.info(f"Results saved to {args.output}")
if __name__ == "__main__":
main() |