Security Policy
Overview
DeepXR is committed to maintaining the security and integrity of the Helion-2.5-Rnd model and its associated infrastructure. This document outlines our security policies, vulnerability reporting procedures, and best practices for secure deployment.
Supported Versions
Security updates and patches are provided for the following versions:
| Version | Supported | Status |
|---|---|---|
| 2.5.x | :white_check_mark: | Active |
| 2.4.x | :x: | EOL |
| < 2.4 | :x: | EOL |
Security Features
Model Security
SafeTensors Format
- All model weights are stored using SafeTensors format
- Prevents arbitrary code execution during model loading
- Validates tensor metadata and structure
- Faster and safer than pickle-based formats
Weight Integrity
- SHA256 checksums provided for all model files
- Verify file integrity before loading
- Detect tampering or corruption
No Quantization
- Model provided in full precision (BF16/FP16)
- Eliminates quantization-related vulnerabilities
- Maintains deterministic behavior
Inference Security
Input Validation
- Maximum token length enforcement
- Character encoding validation
- Malicious pattern detection
- Rate limiting per client
Output Filtering
- Content safety filters
- PII detection and redaction
- Toxicity monitoring
- Prompt injection detection
API Security
- TLS 1.3 encryption for all communications
- API key authentication
- Request signature verification
- CORS policy enforcement
Reporting a Vulnerability
How to Report
If you discover a security vulnerability in Helion-2.5-Rnd, please report it responsibly:
- DO NOT create a public GitHub issue
- Email [email protected] with details
- Include:
- Description of the vulnerability
- Steps to reproduce
- Potential impact assessment
- Suggested mitigation (if any)
What to Expect
- Initial Response: Within 48 hours
- Status Update: Within 7 days
- Resolution Timeline: Varies by severity
- Critical: 1-7 days
- High: 7-30 days
- Medium: 30-90 days
- Low: 90+ days
Disclosure Policy
- We follow coordinated disclosure principles
- Security advisories published after patches are available
- Credit given to reporters (unless anonymous preferred)
- CVE IDs assigned for significant vulnerabilities
Security Best Practices
Deployment Security
Network Security
# Example: Secure nginx configuration
server {
listen 443 ssl http2;
ssl_protocols TLSv1.3;
ssl_ciphers HIGH:!aNULL:!MD5;
ssl_prefer_server_ciphers on;
# Security headers
add_header Strict-Transport-Security "max-age=31536000" always;
add_header X-Frame-Options "SAMEORIGIN" always;
add_header X-Content-Type-Options "nosniff" always;
add_header X-XSS-Protection "1; mode=block" always;
}
Docker Security
# Use non-root user
RUN useradd -m -u 1000 helion
USER helion
# Read-only root filesystem
docker run --read-only --tmpfs /tmp:rw,noexec,nosuid
# Drop capabilities
docker run --cap-drop=ALL --cap-add=NET_BIND_SERVICE
# Resource limits
docker run --memory="256g" --cpus="64"
Kubernetes Security
apiVersion: v1
kind: Pod
metadata:
name: helion-pod
spec:
securityContext:
runAsNonRoot: true
runAsUser: 1000
fsGroup: 1000
containers:
- name: helion
securityContext:
allowPrivilegeEscalation: false
readOnlyRootFilesystem: true
capabilities:
drop:
- ALL
Input Validation
Python Implementation
import re
from typing import Optional
class InputValidator:
"""Validate and sanitize user inputs"""
MAX_LENGTH = 131072
MAX_TOKENS = 8192
@staticmethod
def validate_prompt(prompt: str) -> tuple[bool, Optional[str]]:
"""Validate prompt input"""
# Length check
if len(prompt) > InputValidator.MAX_LENGTH:
return False, "Prompt exceeds maximum length"
# Character validation
if not prompt.isprintable() and not prompt.isspace():
return False, "Prompt contains invalid characters"
# Injection detection
dangerous_patterns = [
r'<script',
r'javascript:',
r'on\w+\s*=',
r'\beval\(',
r'\bexec\(',
]
for pattern in dangerous_patterns:
if re.search(pattern, prompt, re.IGNORECASE):
return False, "Potential injection detected"
return True, None
@staticmethod
def sanitize_output(text: str) -> str:
"""Sanitize model output"""
# Remove potential XSS vectors
text = re.sub(r'<script.*?</script>', '', text, flags=re.DOTALL | re.IGNORECASE)
text = re.sub(r'javascript:', '', text, flags=re.IGNORECASE)
return text
Authentication
API Key Management
import secrets
import hashlib
from datetime import datetime, timedelta
class APIKeyManager:
"""Secure API key management"""
@staticmethod
def generate_key() -> str:
"""Generate cryptographically secure API key"""
return secrets.token_urlsafe(32)
@staticmethod
def hash_key(key: str) -> str:
"""Hash API key for storage"""
return hashlib.sha256(key.encode()).hexdigest()
@staticmethod
def verify_key(key: str, stored_hash: str) -> bool:
"""Verify API key against stored hash"""
return hashlib.sha256(key.encode()).hexdigest() == stored_hash
Rate Limiting
from collections import defaultdict
from time import time
class RateLimiter:
"""Token bucket rate limiter"""
def __init__(self, requests_per_minute: int = 60):
self.rate = requests_per_minute / 60.0
self.buckets = defaultdict(lambda: {'tokens': requests_per_minute, 'last': time()})
def allow_request(self, client_id: str) -> bool:
"""Check if request is allowed"""
bucket = self.buckets[client_id]
now = time()
# Add tokens based on elapsed time
elapsed = now - bucket['last']
bucket['tokens'] = min(
self.rate * 60,
bucket['tokens'] + elapsed * self.rate
)
bucket['last'] = now
# Check if request allowed
if bucket['tokens'] >= 1:
bucket['tokens'] -= 1
return True
return False
Content Safety
Filtering Implementation
import re
from typing import List, Tuple
class ContentFilter:
"""Content safety filtering"""
# Configurable toxicity patterns
TOXIC_PATTERNS = [
r'\b(violence|harm|kill|attack)\b',
r'\b(hate|racist|sexist)\b',
r'\b(illegal|unlawful|criminal)\b',
]
# PII patterns
PII_PATTERNS = {
'email': r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b',
'ssn': r'\b\d{3}-\d{2}-\d{4}\b',
'phone': r'\b\d{3}[-.]?\d{3}[-.]?\d{4}\b',
'credit_card': r'\b\d{4}[-\s]?\d{4}[-\s]?\d{4}[-\s]?\d{4}\b',
}
@classmethod
def check_toxicity(cls, text: str) -> Tuple[bool, List[str]]:
"""Check for toxic content"""
violations = []
for pattern in cls.TOXIC_PATTERNS:
if re.search(pattern, text, re.IGNORECASE):
violations.append(pattern)
return len(violations) == 0, violations
@classmethod
def detect_pii(cls, text: str) -> List[str]:
"""Detect personally identifiable information"""
found_pii = []
for pii_type, pattern in cls.PII_PATTERNS.items():
if re.search(pattern, text):
found_pii.append(pii_type)
return found_pii
@classmethod
def redact_pii(cls, text: str) -> str:
"""Redact PII from text"""
for pii_type, pattern in cls.PII_PATTERNS.items():
text = re.sub(pattern, f'[REDACTED_{pii_type.upper()}]', text)
return text
Monitoring and Auditing
Security Logging
import logging
import json
from datetime import datetime
class SecurityLogger:
"""Security event logging"""
def __init__(self, log_file: str = "security.log"):
self.logger = logging.getLogger("security")
handler = logging.FileHandler(log_file)
handler.setFormatter(logging.Formatter('%(message)s'))
self.logger.addHandler(handler)
self.logger.setLevel(logging.INFO)
def log_event(self, event_type: str, details: dict):
"""Log security event"""
event = {
'timestamp': datetime.utcnow().isoformat(),
'type': event_type,
'details': details
}
self.logger.info(json.dumps(event))
def log_authentication(self, client_id: str, success: bool):
"""Log authentication attempt"""
self.log_event('authentication', {
'client_id': client_id,
'success': success
})
def log_violation(self, client_id: str, violation_type: str, details: str):
"""Log security violation"""
self.log_event('violation', {
'client_id': client_id,
'violation_type': violation_type,
'details': details
})
Incident Response
Response Procedure
- Detection: Identify security incident
- Containment: Isolate affected systems
- Investigation: Determine scope and impact
- Remediation: Apply fixes and patches
- Recovery: Restore normal operations
- Review: Post-incident analysis
Contact Information
- Security Team: [email protected]
- Emergency: +1-555-DEEPXR-SEC
- PGP Key: Available at https://deepxr.ai/pgp-key.asc
Compliance
Standards Adherence
- OWASP Top 10: Protection against common vulnerabilities
- CWE/SANS Top 25: Mitigation of dangerous software errors
- NIST Cybersecurity Framework: Aligned with framework guidelines
- ISO 27001: Information security management
Data Privacy
- GDPR Compliance: EU data protection regulation
- CCPA Compliance: California Consumer Privacy Act
- Data Minimization: Collect only necessary information
- Right to Erasure: Support for data deletion requests
Updates
This security policy is reviewed quarterly and updated as needed. Last updated: 2025-01-30
Acknowledgments
We thank the security research community for responsible disclosure and continuous improvement of our security posture.
DeepXR Security Team
[email protected]
https://deepxr.ai/security