Helion-V2.5-Rnd / inference /batch_inference.py
Trouter-Library's picture
Create inference/batch_inference.py
b010003 verified
#!/usr/bin/env python3
"""
Helion-2.5-Rnd Batch Inference
Efficient batch processing for large-scale inference tasks
"""
import argparse
import json
import logging
import time
from pathlib import Path
from typing import Dict, List, Optional, Union
import pandas as pd
from tqdm import tqdm
from inference.client import HelionClient
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
class BatchProcessor:
"""Process large batches of inference requests"""
def __init__(
self,
client: HelionClient,
batch_size: int = 10,
max_retries: int = 3,
retry_delay: float = 1.0
):
"""
Initialize batch processor
Args:
client: HelionClient instance
batch_size: Number of requests to process concurrently
max_retries: Maximum retry attempts for failed requests
retry_delay: Delay between retries in seconds
"""
self.client = client
self.batch_size = batch_size
self.max_retries = max_retries
self.retry_delay = retry_delay
self.stats = {
'total': 0,
'successful': 0,
'failed': 0,
'total_time': 0.0,
'avg_time_per_request': 0.0
}
def process_prompts(
self,
prompts: List[str],
temperature: float = 0.7,
max_tokens: int = 1024,
**kwargs
) -> List[Dict]:
"""
Process a list of prompts
Args:
prompts: List of input prompts
temperature: Sampling temperature
max_tokens: Maximum tokens per response
**kwargs: Additional generation parameters
Returns:
List of results with prompt, response, and metadata
"""
results = []
start_time = time.time()
logger.info(f"Processing {len(prompts)} prompts...")
for i in tqdm(range(0, len(prompts), self.batch_size)):
batch = prompts[i:i + self.batch_size]
for prompt in batch:
result = self._process_single_with_retry(
prompt,
temperature,
max_tokens,
**kwargs
)
results.append(result)
# Update statistics
self.stats['total'] = len(prompts)
self.stats['successful'] = sum(1 for r in results if r['success'])
self.stats['failed'] = len(prompts) - self.stats['successful']
self.stats['total_time'] = time.time() - start_time
self.stats['avg_time_per_request'] = self.stats['total_time'] / len(prompts)
logger.info(f"Batch processing complete. Success rate: {self.stats['successful']}/{self.stats['total']}")
return results
def _process_single_with_retry(
self,
prompt: str,
temperature: float,
max_tokens: int,
**kwargs
) -> Dict:
"""Process single prompt with retry logic"""
for attempt in range(self.max_retries):
try:
start = time.time()
response = self.client.complete(
prompt=prompt,
temperature=temperature,
max_tokens=max_tokens,
**kwargs
)
duration = time.time() - start
return {
'prompt': prompt,
'response': response,
'success': True,
'duration': duration,
'attempts': attempt + 1
}
except Exception as e:
logger.warning(f"Attempt {attempt + 1} failed: {str(e)}")
if attempt < self.max_retries - 1:
time.sleep(self.retry_delay)
else:
return {
'prompt': prompt,
'response': None,
'success': False,
'error': str(e),
'attempts': attempt + 1
}
def process_chat_conversations(
self,
conversations: List[List[Dict]],
temperature: float = 0.7,
max_tokens: int = 1024,
**kwargs
) -> List[Dict]:
"""
Process chat conversations in batch
Args:
conversations: List of message lists
temperature: Sampling temperature
max_tokens: Maximum tokens per response
**kwargs: Additional generation parameters
Returns:
List of conversation results
"""
results = []
start_time = time.time()
logger.info(f"Processing {len(conversations)} conversations...")
for conv in tqdm(conversations):
try:
start = time.time()
response = self.client.chat(
messages=conv,
temperature=temperature,
max_tokens=max_tokens,
**kwargs
)
duration = time.time() - start
results.append({
'conversation': conv,
'response': response,
'success': True,
'duration': duration
})
except Exception as e:
logger.error(f"Conversation processing failed: {str(e)}")
results.append({
'conversation': conv,
'response': None,
'success': False,
'error': str(e)
})
total_time = time.time() - start_time
successful = sum(1 for r in results if r['success'])
logger.info(f"Processed {successful}/{len(conversations)} conversations in {total_time:.2f}s")
return results
def process_file(
self,
input_file: str,
output_file: str,
prompt_column: str = "prompt",
temperature: float = 0.7,
max_tokens: int = 1024,
**kwargs
) -> pd.DataFrame:
"""
Process prompts from file
Args:
input_file: Input CSV/JSON file path
output_file: Output file path
prompt_column: Column name containing prompts
temperature: Sampling temperature
max_tokens: Maximum tokens per response
**kwargs: Additional generation parameters
Returns:
DataFrame with results
"""
# Load input file
input_path = Path(input_file)
if input_path.suffix == '.csv':
df = pd.read_csv(input_path)
elif input_path.suffix == '.json':
df = pd.read_json(input_path)
else:
raise ValueError(f"Unsupported file format: {input_path.suffix}")
if prompt_column not in df.columns:
raise ValueError(f"Column '{prompt_column}' not found in input file")
# Process prompts
prompts = df[prompt_column].tolist()
results = self.process_prompts(
prompts,
temperature=temperature,
max_tokens=max_tokens,
**kwargs
)
# Add results to dataframe
df['response'] = [r['response'] for r in results]
df['success'] = [r['success'] for r in results]
df['duration'] = [r.get('duration', None) for r in results]
df['error'] = [r.get('error', None) for r in results]
# Save results
output_path = Path(output_file)
output_path.parent.mkdir(parents=True, exist_ok=True)
if output_path.suffix == '.csv':
df.to_csv(output_path, index=False)
elif output_path.suffix == '.json':
df.to_json(output_path, orient='records', indent=2)
else:
raise ValueError(f"Unsupported output format: {output_path.suffix}")
logger.info(f"Results saved to {output_path}")
return df
def get_statistics(self) -> Dict:
"""Get processing statistics"""
return self.stats.copy()
class DatasetProcessor:
"""Process specific dataset formats"""
def __init__(self, client: HelionClient):
self.client = client
self.processor = BatchProcessor(client)
def process_qa_dataset(
self,
questions: List[str],
contexts: Optional[List[str]] = None,
temperature: float = 0.3,
max_tokens: int = 512
) -> List[Dict]:
"""Process question-answering dataset"""
prompts = []
for i, question in enumerate(questions):
if contexts and i < len(contexts):
prompt = f"Context: {contexts[i]}\n\nQuestion: {question}\n\nAnswer:"
else:
prompt = f"Question: {question}\n\nAnswer:"
prompts.append(prompt)
return self.processor.process_prompts(
prompts,
temperature=temperature,
max_tokens=max_tokens
)
def process_code_dataset(
self,
tasks: List[str],
languages: Optional[List[str]] = None,
temperature: float = 0.2,
max_tokens: int = 1024
) -> List[Dict]:
"""Process code generation tasks"""
prompts = []
for i, task in enumerate(tasks):
lang = languages[i] if languages and i < len(languages) else "python"
prompt = f"Write a {lang} function to: {task}\n\n```{lang}\n"
prompts.append(prompt)
return self.processor.process_prompts(
prompts,
temperature=temperature,
max_tokens=max_tokens
)
def process_translation_dataset(
self,
texts: List[str],
source_lang: str,
target_lang: str,
temperature: float = 0.3,
max_tokens: int = 1024
) -> List[Dict]:
"""Process translation tasks"""
prompts = []
for text in texts:
prompt = f"Translate the following text from {source_lang} to {target_lang}:\n\n{text}\n\nTranslation:"
prompts.append(prompt)
return self.processor.process_prompts(
prompts,
temperature=temperature,
max_tokens=max_tokens
)
def process_summarization_dataset(
self,
documents: List[str],
max_summary_length: int = 150,
temperature: float = 0.5,
max_tokens: int = 512
) -> List[Dict]:
"""Process document summarization"""
prompts = []
for doc in documents:
prompt = f"Summarize the following document in {max_summary_length} words or less:\n\n{doc}\n\nSummary:"
prompts.append(prompt)
return self.processor.process_prompts(
prompts,
temperature=temperature,
max_tokens=max_tokens
)
def main():
"""Main batch processing entry point"""
parser = argparse.ArgumentParser(description="Batch inference with Helion")
parser.add_argument("--base-url", type=str, default="http://localhost:8000")
parser.add_argument("--input", type=str, required=True, help="Input file (CSV/JSON)")
parser.add_argument("--output", type=str, required=True, help="Output file (CSV/JSON)")
parser.add_argument("--prompt-column", type=str, default="prompt")
parser.add_argument("--temperature", type=float, default=0.7)
parser.add_argument("--max-tokens", type=int, default=1024)
parser.add_argument("--batch-size", type=int, default=10)
args = parser.parse_args()
# Initialize client and processor
client = HelionClient(base_url=args.base_url)
processor = BatchProcessor(client, batch_size=args.batch_size)
# Process file
df = processor.process_file(
input_file=args.input,
output_file=args.output,
prompt_column=args.prompt_column,
temperature=args.temperature,
max_tokens=args.max_tokens
)
# Print statistics
stats = processor.get_statistics()
logger.info("\nProcessing Statistics:")
logger.info(f"Total requests: {stats['total']}")
logger.info(f"Successful: {stats['successful']}")
logger.info(f"Failed: {stats['failed']}")
logger.info(f"Total time: {stats['total_time']:.2f}s")
logger.info(f"Avg time per request: {stats['avg_time_per_request']:.2f}s")
if __name__ == "__main__":
main()