UPerNet Model Card
Table of Contents:
Load trained model
import segmentation_models_pytorch as smp
model = smp.from_pretrained("<save-directory-or-this-repo>")
Model init parameters
model_init_params = {
"encoder_name": "resnext101_32x8d",
"encoder_depth": 5,
"encoder_weights": "imagenet",
"decoder_channels": 256,
"decoder_use_norm": "batchnorm",
"in_channels": 3,
"classes": 1,
"activation": None,
"upsampling": 4,
"aux_params": None
}
Model metrics
[
{
"test_per_image_iou": 0.20957648754119873,
"test_dataset_iou": 0.2279270589351654,
"test_per_image_accuracy": 0.9694068431854248,
"test_dataset_accuracy": 0.96940678358078
}
]
Dataset
Dataset name: VIP
More Information
- Library: https://github.com/qubvel/segmentation_models.pytorch
- Docs: https://smp.readthedocs.io/en/latest/
This model has been pushed to the Hub using the PytorchModelHubMixin
- Downloads last month
- 12