FiditeNemini's picture
Update README.md
ba9c863 verified
---
license: apache-2.0
language:
- en
base_model:
- mkurman/Qwen2.5-14B-DeepSeek-R1-1M
- huihui-ai/DeepSeek-R1-Distill-Qwen-14B-abliterated-v2
library_name: mlx
tags:
- merge
- text-generation-inference
- code
---
# An MLX bfloat16 FP16 model, 1M context length, uncensored.
## Model Merge: DeepSeek-R1-Distill-Qwen-14B-abliterated-v2
**Description**:
This model is a tie merge of "huihui-ai/DeepSeek-R1-Distill-Qwen-14B-abliterated-v2" and "mkurman/Qwen2.5-14B-DeepSeek-R1-1M".
### Recipes
**Model Recipe:**
```models:
- model: "huihui-ai/DeepSeek-R1-Distill-Qwen-14B-abliterated-v2"
parameters:
weight: 1
density: 1
merge_method: ties
base_model: "mkurman/Qwen2.5-14B-DeepSeek-R1-1M"
parameters:
density: 1
normalize: true
int8_mask: true
dtype: bfloat16
```
**Merged Model**:
The model was merged using the "ties" method.
### Conversion to MLX Format
The model was converted to the MLX format with brainfloat16 precision using the following command:
```bash
mlx_lm.convert --hf-path FiditeNemini/Qwen2.5-14B-DeepSeek-R1-1M --mlx-path ./Unhinged-Qwen2.5-R1.bf16 --dtype bfloat16 -q --q-bits 16
```
### Usage Example
You can use this model with the following code snippet:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("FiditeNemini/Unhinged-Qwen2.5-R1.bf16")
tokenizer = AutoTokenizer.from_pretrained("FiditeNemini/Unhinged-Qwen2.5-R1.bf16")
```
### Details
- Model type: CausalLM
- Context length: 4096 tokens
- License: Apache 2.0
### Keywords
- DeepSeek-R1-Distill
- Qwen2.5
- Abliterated
- LLM
- 1M context