Usage
4-bit-quantized Qwen 0.6B fine-tuned on the english version of `brighter-dataset/BRIGHTER-emotion-categories'.
To use the model:
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
tokenizer = AutoTokenizer.from_pretrained(
"FritzStack/QWEmotioN-4bit",
trust_remote_code=True
)
model = AutoModelForCausalLM.from_pretrained(
"FritzStack/QWEmotioN-4bit",
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True
)
def predict_emotions(text, max_new_tokens=50):
"""
Predict emotions for a given text
"""
prompt = f"{text}. "
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=max_new_tokens,
do_sample=False,
#temperature=0.8,
top_k = 10,
#repetition_penalty=35.,
pad_token_id=tokenizer.eos_token_id
)
generated_text = tokenizer.decode(
outputs[0][len(inputs.input_ids[0]):],
skip_special_tokens=False
).strip()
return generated_text
print(predict_emotions("I miss you"))
### Output
Emotion Output: sadness <|im_end|>
Uploaded model
- Developed by: FritzStack
- License: apache-2.0
- Finetuned from model : unsloth/qwen3-0.6b-bnb-4bit
This qwen3 model was trained 2x faster with Unsloth and Huggingface's TRL library.
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
