| metrics: | |
| - code_eval | |
| library_name: transformers | |
| tags: | |
| - code | |
| - mlx | |
| base_model: WizardLMTeam/WizardCoder-33B-V1.1 | |
| model-index: | |
| - name: WizardCoder | |
| results: | |
| - task: | |
| type: text-generation | |
| dataset: | |
| name: HumanEval | |
| type: openai_humaneval | |
| metrics: | |
| - type: pass@1 | |
| value: 0.799 | |
| name: pass@1 | |
| verified: false | |
| # GGorman/WizardCoder-33B-V1.1-Q8-mlx | |
| The Model [GGorman/WizardCoder-33B-V1.1-Q8-mlx](https://huggingface.co/GGorman/WizardCoder-33B-V1.1-Q8-mlx) was converted to MLX format from [WizardLMTeam/WizardCoder-33B-V1.1](https://huggingface.co/WizardLMTeam/WizardCoder-33B-V1.1) using mlx-lm version **0.19.1**. | |
| ## Use with mlx | |
| ```bash | |
| pip install mlx-lm | |
| ``` | |
| ```python | |
| from mlx_lm import load, generate | |
| model, tokenizer = load("GGorman/WizardCoder-33B-V1.1-Q8-mlx") | |
| prompt="hello" | |
| if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: | |
| messages = [{"role": "user", "content": prompt}] | |
| prompt = tokenizer.apply_chat_template( | |
| messages, tokenize=False, add_generation_prompt=True | |
| ) | |
| response = generate(model, tokenizer, prompt=prompt, verbose=True) | |
| ``` | |