my_awesome_wnut_model
This model is a fine-tuned version of distilbert/distilbert-base-uncased on the wnut_17 dataset. It achieves the following results on the evaluation set:
- Loss: 0.2706
- Precision: 0.5719
- Recall: 0.3281
- F1: 0.4170
- Accuracy: 0.9421
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 213 | 0.2857 | 0.5354 | 0.2382 | 0.3297 | 0.9380 |
No log | 2.0 | 426 | 0.2706 | 0.5719 | 0.3281 | 0.4170 | 0.9421 |
Framework versions
- Transformers 4.56.2
- Pytorch 2.5.1+cu121
- Datasets 3.6.0
- Tokenizers 0.22.1
- Downloads last month
- 11
Model tree for Gautamo1/my_awesome_wnut_model
Base model
distilbert/distilbert-base-uncasedDataset used to train Gautamo1/my_awesome_wnut_model
Evaluation results
- Precision on wnut_17test set self-reported0.572
- Recall on wnut_17test set self-reported0.328
- F1 on wnut_17test set self-reported0.417
- Accuracy on wnut_17test set self-reported0.942