SentenceTransformer based on facebook/esm2_t6_8M_UR50D
This is a sentence-transformers model finetuned from facebook/esm2_t6_8M_UR50D. It maps sentences & paragraphs to a 320-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: facebook/esm2_t6_8M_UR50D
- Maximum Sequence Length: 1026 tokens
- Output Dimensionality: 320 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 1026, 'do_lower_case': False}) with Transformer model: EsmModel
(1): Pooling({'word_embedding_dimension': 320, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("HassanCS/TCRa_HLA_peptide_ESM")
# Run inference
sentences = [
'A Q K V T Q A Q T E I S V V E K E D V T L D C V Y E T R D T T Y Y L F W Y K Q P P S G E L V F L I R R N S F D E Q N E I S G R Y S W N F Q K S T S S F N F T I T A S Q V V D S A V Y F C C A L L Y N N N D M R F F G A G T R L T V K P N',
'A Q K V T Q A Q T E I S V V E K E D V T L D C V Y E T R D T T Y Y L F W Y K Q P P S G E L V F L I R R N S F D E Q N E I S G R Y S W N F Q K S T S S F N F T I T A S Q V V D S A V Y F C C A L S E T P R G G G T S Y G K L T F F G Q G T I L T V H P N',
'Q K E V E Q N S G P L S V P E G A I A S L N C T Y S D R G S Q S F F W Y R Q Y S G K S P E L I M F I Y S N G D K E D G R F T A Q L N K A S Q Y V S L L I R D S Q P S D S A T Y L C C A V A D D K I I F F G K G T R L H I L P N',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 320]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
all-dev - Evaluated with
EmbeddingSimilarityEvaluator
| Metric | Value |
|---|---|
| pearson_cosine | 0.8254 |
| spearman_cosine | 0.8706 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 753,444 training samples
- Columns:
sentence1,sentence2, andscore - Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 108 tokens
- mean: 116.0 tokens
- max: 126 tokens
- min: 107 tokens
- mean: 116.16 tokens
- max: 126 tokens
- min: 0.0
- mean: 0.38
- max: 0.97
- Samples:
sentence1 sentence2 score T Q L L E Q S P Q F L S I Q E G E N L T V Y C N S S S V F S S L Q W Y R Q E P G E G P V L L V T V V T G G E V K K L K R L T F Q F G D A R K D S S L H I T A A Q P G D T G L Y L C C A G A G G G S Q G N L I F F G K G T K L S V K P NT Q L L E Q S P Q F L S I Q E G E N L T V Y C N S S S V F S S L Q W Y R Q E P G E G P V L L V T V V T G G E V K K L K R L T F Q F G D A R K D S S L H I T A A Q P G D T G L Y L C C A G G N G G S Q G N L I F F G K G T K L S V K P N0.8347107438016529A Q T V T Q S Q P E M S V Q E A E T V T L S C T Y D T S E N N Y Y L F W Y K Q P P S R Q M I L V I R Q E A Y K Q Q N A T E N R F S V N F Q K A A K S F S L K I S D S Q L G D T A M Y F C A F A E Y G N K L V F G A G T I L R V K S YA Q T V T Q S Q P E M S V Q E A E T V T L S C T Y D T S E S D Y Y L F W Y K Q P P S R Q M I L V I R Q E A Y K Q Q N A T E N R F S V N F Q K A A K S F S L K I S D S Q L G D A A M Y F C A L F S G S R L T F G E G T Q L T V N P D0.0A Q K V T Q A Q T E I S V V E K E D V T L D C V Y E T R D T T Y Y L F W Y K Q P P S G E L V F L I R R N S F D E Q N E I S G R Y S W N F Q K S T S S F N F T I T A S Q V V D S A V Y F C C A L L I F S G G Y N K L I F F G A G T R L A V H P YA Q K V T Q A Q T E I S V V E K E D V T L D C V Y E T R D T T Y Y L F W Y K Q P P S G E L V F L I R R N S F D E Q N E I S G R Y S W N F Q K S T S S F N F T I T A S Q V V D S A V Y F C C A L S E A G S G Y S T L T F F G K G T M L L V S P D0.4008264462809917 - Loss:
CoSENTLosswith these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 83,716 evaluation samples
- Columns:
sentence1,sentence2, andscore - Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 106 tokens
- mean: 116.08 tokens
- max: 126 tokens
- min: 109 tokens
- mean: 116.05 tokens
- max: 125 tokens
- min: 0.0
- mean: 0.39
- max: 0.97
- Samples:
sentence1 sentence2 score G E N V E Q H P S T L S V Q E G D S A V I K C T Y S D S A S N Y F P W Y K Q E L G K G P Q L I I D I R S N V G E K K D Q R I A V T L N K T A K H F S L H I T E T Q P E D S A V Y F C A A S M N N Y G Q N F V F G P G T R L S V L P YG E D V E Q S L F L S V R E G D S S V I N C T Y T D S S S T Y L Y W Y K Q E P G A G L Q L L T Y I F S N M D M K Q D Q R L T V L L N K K D K H L S L R I A D T Q T G D S A I Y F C A E R A G A N N L F F G T G T R L T V I P Y0.09297520661157023A Q T V T Q S Q P E M S V Q E A E T V T L S C T Y D T S E N N Y Y L F W Y K Q P P S R Q M I L V I R Q E A Y K Q Q N A T E N R F S V N F Q K A A K S F S L K I S D S Q L G D T A M Y F C C A S H M N N A R L M F F G D G T Q L V V K P NA Q T V T Q S Q P E M S V Q E A E T V T L S C T Y D T S E N N Y Y L F W Y K Q P P S R Q M I L V I R Q E A Y K Q Q N A T E N R F S V N F Q K A A K S F S L K I S D S Q L G D T A M Y F C C S S G G G A D G L T F F G K G T H L I I Q P Y0.00826446280991735G Q S L E Q P S E V T A V E G A I V Q I N C T Y Q T S G F Y G L S W Y Q Q H D G G A P T F L S Y N A L D G L E E T G R F S S F L S R S D S Y G Y L L L Q E L Q M K D S A S Y F C C A L A G G G N K L T F F G T G T Q L K V E L NK N Q V E Q S P Q S L I I L E G K N C T L Q C N Y T V S P F S N L R W Y K Q D T G R G P V S L T I M T F S E N T K S N G R Y T A T L D A D T K Q S S L H I T A S Q L S D S A S Y I C C V V S S Y S S A S K I I F F G S G T R L S I R P N0.9690082644628099 - Loss:
CoSENTLosswith these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 128per_device_eval_batch_size: 128learning_rate: 0.001weight_decay: 0.0001num_train_epochs: 2fp16: Trueload_best_model_at_end: True
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 128per_device_eval_batch_size: 128per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 0.001weight_decay: 0.0001adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 2max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | Validation Loss | all-dev_spearman_cosine |
|---|---|---|---|---|
| 0.3397 | 2000 | 8.8932 | 8.8505 | 0.5332 |
| 0.6795 | 4000 | 8.8096 | 8.7699 | 0.6565 |
| 1.0192 | 6000 | 8.7188 | 8.6631 | 0.7476 |
| 1.3589 | 8000 | 8.592 | 8.5352 | 0.8242 |
| 1.6987 | 10000 | 8.4614 | 8.4169 | 0.8706 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.47.0
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.3.1
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}
- Downloads last month
- 4
Model tree for HassanCS/TCRa_HLA_peptide_ESM
Evaluation results
- Pearson Cosine on all devself-reported0.825
- Spearman Cosine on all devself-reported0.871