llm-judge-full-backup
Full training folder backup - Toàn bộ checkpoints và models.
📂 Cấu trúc Folder
train_llm_judge_v2/
├── checkpoint-150/ # Checkpoint tại step 150
├── checkpoint-200/ # Checkpoint tại step 200
├── checkpoint-210/ # Checkpoint tại step 210
├── final_model/ # Model cuối cùng (merged)
├── lora_adapters/ # LoRA adapters
├── README.md
├── zero_shot_metrics.json
└── zero_shot_results.csv
🚀 Sử Dụng
1️⃣ Clone Repo
git lfs install
git clone https://huggingface.co/ImNotTam/llm-judge-full-backup
cd llm-judge-full-backup
2️⃣ Load LoRA Adapters (Nhẹ nhất - khuyến nghị)
from unsloth import FastLanguageModel
model, tokenizer = FastLanguageModel.from_pretrained(
model_name="ImNotTam/llm-judge-full-backup",
subfolder="lora_adapters",
max_seq_length=2048,
dtype=None,
load_in_4bit=True,
)
# Enable inference mode
FastLanguageModel.for_inference(model)
# Test
prompt = "Đánh giá response này..."
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=256)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
3️⃣ Load Final Model
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained(
"ImNotTam/llm-judge-full-backup",
subfolder="final_model",
device_map="auto",
torch_dtype="auto"
)
tokenizer = AutoTokenizer.from_pretrained("ImNotTam/llm-judge-full-backup", subfolder="final_model")
# Inference
inputs = tokenizer("Your prompt", return_tensors="pt").to("cuda")
outputs = model.generate(**inputs)
print(tokenizer.decode(outputs[0]))
4️⃣ Resume Training từ Checkpoint
from transformers import Trainer, TrainingArguments
# Load checkpoint muốn resume
model = AutoModelForCausalLM.from_pretrained(
"ImNotTam/llm-judge-full-backup",
subfolder="checkpoint-210", # Chọn checkpoint
device_map="auto"
)
# Continue training
trainer = Trainer(
model=model,
args=TrainingArguments(
output_dir="./continue_training",
# ... your training args
),
)
trainer.train(resume_from_checkpoint=True)
5️⃣ Fine-tune Tiếp từ LoRA Adapter
from unsloth import FastLanguageModel
from trl import SFTTrainer
# Load LoRA adapter
model, tokenizer = FastLanguageModel.from_pretrained(
model_name="ImNotTam/llm-judge-full-backup",
subfolder="lora_adapters",
max_seq_length=2048,
dtype=None,
load_in_4bit=True,
)
# Add LoRA config để train tiếp
model = FastLanguageModel.get_peft_model(
model,
r=16,
target_modules=["q_proj", "k_proj", "v_proj", "o_proj",
"gate_proj", "up_proj", "down_proj"],
lora_alpha=16,
lora_dropout=0,
bias="none",
use_gradient_checkpointing="unsloth",
)
# Train với data mới
trainer = SFTTrainer(
model=model,
tokenizer=tokenizer,
train_dataset=your_new_dataset,
# ... training args
)
trainer.train()
6️⃣ Xem Metrics và Results
import json
import pandas as pd
# Load metrics
with open("zero_shot_metrics.json", "r") as f:
metrics = json.load(f)
print("📊 Metrics:", metrics)
# Load results
results = pd.read_csv("zero_shot_results.csv")
print("\n📈 Results:")
print(results.head())
📋 Nội Dung Repo
| Folder/File | Mô tả | Kích thước |
|---|---|---|
lora_adapters/ |
LoRA adapters (nhẹ) | ~50-100 MB |
final_model/ |
Model merged đầy đủ | ~4-8 GB |
checkpoint-150/ |
Training checkpoint | ~4-8 GB |
checkpoint-200/ |
Training checkpoint | ~4-8 GB |
checkpoint-210/ |
Training checkpoint | ~4-8 GB |
zero_shot_metrics.json |
Evaluation metrics | <1 MB |
zero_shot_results.csv |
Detailed results | <1 MB |
💡 Khuyến Nghị
- Inference nhanh: Dùng
lora_adapters/ - Production: Dùng
final_model/ - Train tiếp: Load
lora_adapters/+ add LoRA config - Resume training: Load checkpoint cụ thể
📦 Requirements
pip install unsloth transformers torch trl
📄 License
Apache 2.0
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support