|
|
--- |
|
|
base_model: |
|
|
- Qwen/Qwen2.5-VL-3B-Instruct |
|
|
language: |
|
|
- en |
|
|
license: apache-2.0 |
|
|
tags: |
|
|
- gui |
|
|
- agent |
|
|
pipeline_tag: image-text-to-text |
|
|
library_name: transformers |
|
|
--- |
|
|
|
|
|
# InfiGUI-R1-3B |
|
|
|
|
|
This repository contains the model from the [InfiGUI-R1](https://arxiv.org/abs/2504.14239) paper. The model is based on `Qwen2.5-VL-3B-Instruct` and trained using the proposed Actor2Reasoner framework, enhanced through reinforcement learning to improve its planning and reflection capabilities for GUI tasks. |
|
|
|
|
|
## Quick Start |
|
|
|
|
|
### Installation |
|
|
First install required dependencies: |
|
|
```bash |
|
|
pip install transformers qwen-vl-utils |
|
|
``` |
|
|
|
|
|
### An Example of GUI Grounding & Trajectory Task |
|
|
```python |
|
|
import cv2 |
|
|
import json |
|
|
import torch |
|
|
import requests |
|
|
from PIL import Image |
|
|
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor |
|
|
from qwen_vl_utils import process_vision_info, smart_resize |
|
|
|
|
|
MAX_IMAGE_PIXELS = 5600*28*28 |
|
|
|
|
|
# Load model and processor |
|
|
model = Qwen2_5_VLForConditionalGeneration.from_pretrained( |
|
|
"Reallm-Labs/InfiGUI-R1-3B", |
|
|
torch_dtype=torch.bfloat16, |
|
|
attn_implementation="flash_attention_2", |
|
|
device_map="auto" |
|
|
) |
|
|
processor = AutoProcessor.from_pretrained("Reallm-Labs/InfiGUI-R1-3B", max_pixels=MAX_IMAGE_PIXELS, padding_side="left") |
|
|
|
|
|
# Prepare image |
|
|
img_url = "https://raw.githubusercontent.com/Reallm-Labs/InfiGUI-R1/main/images/test_img.png" |
|
|
response = requests.get(img_url) |
|
|
with open("test_img.png", "wb") as f: |
|
|
f.write(response.content) |
|
|
image = Image.open("test_img.png") |
|
|
width, height = image.size |
|
|
new_height, new_width = smart_resize(height, width, max_pixels=MAX_IMAGE_PIXELS) |
|
|
|
|
|
# Prepare inputs |
|
|
instruction = "View detailed storage space usage" |
|
|
|
|
|
system_prompt = 'You FIRST think about the reasoning process as an internal monologue and then provide the final answer.\nThe reasoning process MUST BE enclosed within <think> </think> tags.' |
|
|
## The following prompts are primarily sourced from https://github.com/QwenLM/Qwen2.5-VL |
|
|
tool_prompt = "# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>\n{\"type\": \"function\", \"function\": {\"name\": \"mobile_use\", \"description\": \"Use a touchscreen to interact with a mobile device, and take screenshots.\\n* This is an interface to a mobile device with touchscreen. You can perform actions like clicking, typing, swiping, etc.\\n* Some applications may take time to start or process actions, so you may need to wait and take successive screenshots to see the results of your actions.\\n* The screen's resolution is " + str(new_width) + "x" + str(new_height) + ".\\n* Make sure to click any buttons, links, icons, etc with the cursor tip in the center of the element. Don't click boxes on their edges unless asked.\", \"parameters\": {\"properties\": {\"action\": {\"description\": \"The action to perform. The available actions are:\\n* `key`: Perform a key event on the mobile device.\\n - This supports adb's `keyevent` syntax.\\n - Examples: \\\"volume_up\\\", \\\"volume_down\\\", \\\"power\\\", \\\"camera\\\", \\\"clear\\\".\\n* `click`: Click the point on the screen with coordinate (x, y).\\n* `long_press`: Press the point on the screen with coordinate (x, y) for specified seconds.\\n* `swipe`: Swipe from the starting point with coordinate (x, y) to the end point with coordinates2 (x2, y2).\\n* `type`: Input the specified text into the activated input box.\\n* `system_button`: Press the system button.\\n* `open`: Open an app on the device.\\n* `wait`: Wait specified seconds for the change to happen.\\n* `terminate`: Terminate the current task and report its completion status.\", \"enum\": [\"key\", \"click\", \"long_press\", \"swipe\", \"type\", \"system_button\", \"open\", \"wait\", \"terminate\"], \"type\": \"string\"}, \"coordinate\": {\"description\": \"(x, y): The x (pixels from the left edge) and y (pixels from the top edge) coordinates to move the mouse to. Required only by `action=click`, `action=long_press`, and `action=swipe`.\", \"type\": \"array\"}, \"coordinate2\": {\"description\": \"(x, y): The x (pixels from the left edge) and y (pixels from the top edge) coordinates to move the mouse to. Required only by `action=swipe`.\", \"type\": \"array\"}, \"text\": {\"description\": \"Required only by `action=key`, `action=type`, and `action=open`.\", \"type\": \"string\"}, \"time\": {\"description\": \"The seconds to wait. Required only by `action=long_press` and `action=wait`.\", \"type\": \"number\"}, \"button\": {\"description\": \"Back means returning to the previous interface, Home means returning to the desktop, Menu means opening the application background menu, and Enter means pressing the enter. Required only by `action=system_button`\", \"enum\": [\"Back\", \"Home\", \"Menu\", \"Enter\"], \"type\": \"string\"}, \"status\": {\"description\": \"The status of the task. Required only by `action=terminate`.\", \"type\": \"string\", \"enum\": [\"success\", \"failure\"]}}, \"required\": [\"action\"], \"type\": \"object\"}}}\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call>" |
|
|
grounding_prompt = f'The screen\'s resolution is {new_width}x{new_height}.\nPoint to the UI element most relevant to "{instruction}", output its coordinates using JSON format:\n```json\n[\n {{"point_2d": [x, y], "label": "object name/description"}}\n]```' |
|
|
trajectory_prompt = f'The user query: {instruction}\nTask progress (You have done the following operation on the current device): ' |
|
|
|
|
|
# Build messages |
|
|
grounding_messages = [ |
|
|
{"role": "system", "content": system_prompt}, |
|
|
{ |
|
|
"role": "user", |
|
|
"content": [ |
|
|
{"type": "image", "image": "test_img.png"}, |
|
|
{"type": "text", "text": grounding_prompt} |
|
|
] |
|
|
} |
|
|
] |
|
|
trajectory_messages = [ |
|
|
{"role": "system", "content": system_prompt + "\n\n" + tool_prompt}, |
|
|
{ |
|
|
"role": "user", |
|
|
"content": [ |
|
|
{"type": "text", "text": trajectory_prompt}, |
|
|
{"type": "image", "image": "test_img.png"} |
|
|
], |
|
|
}, |
|
|
] |
|
|
messages = [grounding_messages, trajectory_messages] |
|
|
|
|
|
# Process and generate |
|
|
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
|
image_inputs, video_inputs = process_vision_info(messages) |
|
|
inputs = processor(text=text, images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt").to("cuda") |
|
|
generated_ids = model.generate(**inputs, max_new_tokens=512) |
|
|
output_text = processor.batch_decode( |
|
|
[out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)], |
|
|
skip_special_tokens=True, |
|
|
clean_up_tokenization_spaces=False |
|
|
) |
|
|
|
|
|
# Visualize results |
|
|
output_text = [ot.split("</think>")[-1] for ot in output_text] |
|
|
|
|
|
grounding_output = output_text[0].replace("```json", "").replace("```", "").strip() |
|
|
trajectory_output = output_text[1].replace("<tool_call>", "").replace("</tool_call>", "").strip() |
|
|
|
|
|
try: |
|
|
grounding_output = json.loads(grounding_output) |
|
|
trajectory_output = json.loads(trajectory_output) |
|
|
|
|
|
grounding_coords = grounding_output[0]['point_2d'] |
|
|
trajectory_coords = trajectory_output["arguments"]['coordinate'] if "coordinate" in trajectory_output["arguments"] else None |
|
|
|
|
|
grounding_label = grounding_output[0]['label'] |
|
|
trajectory_label = json.dumps(trajectory_output["arguments"]) |
|
|
|
|
|
# Load the original image |
|
|
img = cv2.imread("test_img.png") |
|
|
if img is None: |
|
|
raise ValueError("Could not load the image") |
|
|
|
|
|
height, width = img.shape[:2] |
|
|
|
|
|
# Create copies for each visualization |
|
|
grounding_img = img.copy() |
|
|
trajectory_img = img.copy() |
|
|
|
|
|
# Visualize grounding coordinates |
|
|
if grounding_coords: |
|
|
x = int(grounding_coords[0] / new_width * width) |
|
|
y = int(grounding_coords[1] / new_height * height) |
|
|
|
|
|
cv2.circle(grounding_img, (x, y), 10, (0, 0, 255), -1) |
|
|
cv2.putText(grounding_img, grounding_label, (x+10, y-10), |
|
|
cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 255), 2) |
|
|
cv2.imwrite("grounding_output.png", grounding_img) |
|
|
print("Predicted coordinates:", grounding_coords) |
|
|
print(f"Grounding visualization saved to grounding_output.png") |
|
|
|
|
|
# Visualize trajectory coordinates |
|
|
if trajectory_coords: |
|
|
x = int(trajectory_coords[0] / new_width * width) |
|
|
y = int(trajectory_coords[1] / new_height * height) |
|
|
|
|
|
cv2.circle(trajectory_img, (x, y), 10, (0, 0, 255), -1) |
|
|
cv2.putText(trajectory_img, trajectory_label, (x+10, y-10), |
|
|
cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 255), 2) |
|
|
cv2.imwrite("trajectory_output.png", trajectory_img) |
|
|
print("Predicted action:", trajectory_label) |
|
|
print(f"Trajectory visualization saved to trajectory_output.png") |
|
|
|
|
|
except: |
|
|
print("Error: Failed to parse coordinates or process image") |
|
|
``` |
|
|
|
|
|
For more information, please refer to our [repo](https://github.com/Reallm-Labs/InfiGUI-R1). |
|
|
|
|
|
## Citation Information |
|
|
|
|
|
If you find this work useful, we would be grateful if you consider citing the following papers: |
|
|
```bibtex |
|
|
@article{liu2025infigui, |
|
|
title={InfiGUI-R1: Advancing Multimodal GUI Agents from Reactive Actors to Deliberative Reasoners}, |
|
|
author={Liu, Yuhang and Li, Pengxiang and Xie, Congkai and Hu, Xavier and Han, Xiaotian and Zhang, Shengyu and Yang, Hongxia and Wu, Fei}, |
|
|
journal={arXiv preprint arXiv:2504.14239}, |
|
|
year={2025} |
|
|
} |
|
|
``` |
|
|
```bibtex |
|
|
@article{liu2025infiguiagent, |
|
|
title={InfiGUIAgent: A Multimodal Generalist GUI Agent with Native Reasoning and Reflection}, |
|
|
author={Liu, Yuhang and Li, Pengxiang and Wei, Zishu and Xie, Congkai and Hu, Xueyu and Xu, Xinchen and Zhang, Shengyu and Han, Xiaotian and Yang, Hongxia and Wu, Fei}, |
|
|
journal={arXiv preprint arXiv:2501.04575}, |
|
|
year={2025} |
|
|
} |
|
|
``` |